基于局部保留投影的堆叠隐空间模糊C均值算法

来源 :模式识别与人工智能 | 被引量 : 3次 | 上传用户:liongliong548
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
传统模糊聚类算法在处理复杂非线性数据时学习能力较差.针对此问题,文中基于极限学习机(ELM)理论,结合局部保留投影(LPP)与ELM特征映射,提出压缩隐空间特征映射算法,从而将原始数据从原空间映射至压缩ELM隐空间中.通过连接多个压缩隐空间特征映射,结合模糊聚类技术,提出基于LPP的堆叠隐空间模糊C均值算法.大量实验表明,文中算法对模糊指数的变化不敏感,在处理复杂非线性数据和存在类内差异的图像数据时,能够取得更精确、高效、稳定的学习效果.
其他文献
针对资源稀少情况下小语种的声学建模问题,提出根据解码后文本的困惑度挑选无监督数据并重新训练声学模型的策略.使用少量精标数据训练得到一个初始种子模型后,解码大量无监督数
针对在单一匹配边缘概率分布以缩减源域和目标域的差异性时存在的泛化能力差的问题,提出联合边缘概率分布和条件概率分布减小域间差异性的基于特征和实例的迁移学习算法,通过