论文部分内容阅读
用归纳法证明了两个极限命题。(1)设m〉1,pi(x)(i=1,2,…,m)是[1,+∞)上的连续正函数,在满足一定条件下成立limx→+∞[∫1^xt^m-1p1(t)p2(t)…pm(t)dt]/x^mp1(x)p2(x)…pm(x)=a1a2…am/a2a3…am+a1a3…am+…+a1a2…am-1(2)设pjn,an。(j=1,2,…,m;n=1,2,…;m〉1)均为正数,在满足一定条件下成立limn→∞(∑k=1^nak^m-1p1kp2k…pmk)/an^mp1np2n…pmn=a1a2…