基于改进SOINN算法的恶意软件增量检测方法

来源 :网络与信息安全学报 | 被引量 : 0次 | 上传用户:zhuywei0
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对基于批量学习的恶意软件检测方法存在检测模型动态更新困难、运算存储开销大的问题,将改进的SOINN算法与有监督分类器有机结合,利用SOINN算法的增量学习特性赋予恶意软件检测模型动态更新能力,有效降低运算存储开销。首先对SOINN算法进行改进:在SOINN算法竞争学习周期内,根据全排列思想搜索所有样本输入次序下神经元的权重调节量,计算所有权重调节量的平均值作为神经元最终权重调节量,避免不同样本输入次序影响训练所得神经网络的稳定性,使所得神经网络更能反映原始数据本质特征,从而提高神经网络针对恶意软件检测的
其他文献
控制流劫持攻击是一种常见的针对计算机软件的攻击,给计算机软件安全带来了巨大的危害,是信息安全领域的研究热点。首先,从攻击代码的来源角度出发,阐述了进程控制流劫持攻击
软件静态漏洞检测依据分析对象主要分为二进制漏洞检测和源代码漏洞检测。由于源代码含有更为丰富的语义信息而备受代码审查人员的青睐。针对现有的源代码漏洞检测研究工作,