论文部分内容阅读
近年来多视图学习引起了研究者的广泛关注。在多视图学习中,数据主要来自于多个视图(或特征集)。多视图数据的最大优点是可以从不同视图之间提取互补信息。传统多视图学习方法是在不同视图上单独地训练分类器。这些方法利用了视图之间的互补信息,但是忽略了去除不同视图之间的冗余信息。为了解决上述问题,提出一种基于多视图核鉴别分析的识别方法。该方法通过基于核判别分析从各个视图中提取出相互正交的投影矩阵,从而能够提取出兼具互补和无冗余的特征。在AR和Oxford Flowers17公共数据库上的实验结果验证了所提算法的