论文部分内容阅读
Dose inter-comparison studies for Co γ-ray and 10 MeV electron beam irradiation were carried out 60 from July to October in 2002. The purpose of the studies was to check the reliability of the alanine-PE film dosime- ters made by CIAE, which will be used as transfer standard dosimetry system mainly for electron beam irradiation. The expanded uncertainty of CIAE alanine/EPR dosimetry system was 4.1% for doses not higher than 10 kGy and 5.4% for those above 10 kGy (k=2). CIAE alanine-PE film dosimeters were sent to JAERI, RISO (National Labora- tory in Denmark) and INCT respectively, which were irradiated by Co gamma-rays or electron beams in each labo- 60 ratory. The irradiated dosimeters were then sent back to CIAE for electron paramagnetic resonance (EPR) analysis. The agreements were obtained to be ±1.9% for gamma-ray dose measurement and ±4.3% for electron beam dose measurement, which were all within the combined uncertainty of the reference and CIAE alanine/EPR dosimetry system. Furthermore, the overall mean ratio was found to be 0.995 with 1.8% in the coefficient of variation (CV). The preliminary inter-comparison studies indicated that CIAE film alanine/EPR dosimetry system had the potential to be used as a transfer dosimetry system for high dose measurement.
Dose inter-comparison studies for Co γ-ray and 10 MeV electron beam irradiation were carried out 60 from July to October in 2002. The purpose of the studies was to check the reliability of the alanine-PE film dosimeters made by CIAE, which will be used as transfer standard dosimetry system mainly for electron beam irradiation. The expanded uncertainty of CIAE alanine / EPR dosimetry system was 4.1% for doses not higher than 10 kGy and 5.4% for those above 10 kGy (k = 2) alanine-PE film dosimeters were sent to JAERI, RISO (National Labora- tory in Denmark) and INCT respectively, which were irradiated by Co gamma-rays or electron beams in each labo- 60 ratory. The irradiated dosimeters were then sent back to CIAE for electron paramagnetic resonance (EPR) analysis. The agreements were obtained to be ± 1.9% for gamma-ray dose measurement and ± 4.3% for electron beam dose measurement, which were all within the combined uncertainty of the reference and CIAE alanine / EPR dosimetry system. Furthermore, the overall mean ratio was found to be 0.995 with 1.8 % in the coefficient of variation (CV). The preliminary inter-comparison studies indicate that CIAE film alanine / EPR dosimetry system had the potential to be used as a transfer dosimetry system for high dose measurement.