论文部分内容阅读
摘 要:GIS技术可以有效和直观的勘察矿山地质状况,增进地质勘查行业内外人士对矿山地质环境的感性认识。利用GIS技术提升并改造传统的矿山地质勘查技术水平,对于提高矿产储量估算的智能化和管理的自动化水平以及工作效率的提升,具有十分重要的现实意义。地质人员立足于GIS 技术的成矿预测方法体系,无论从理论、技术、逻辑和效果看,都优于传统方法。基于此,本文概述了地理信息系统(GIS),对GIS技术在地质找矿中的应用优点及其应用进行了探讨分析。
关键词:GIS技术;地质找矿;优点; 应用
随着地质勘查工作的深入,工程建设规模的扩大,矿山的地质勘查深度及广度的不断拓展,勘察信息需要交流的速度也越来越快,这就迫切地需要一种方便快捷的手段作为勘查信息交流的载体,而GIS技术可以很好地满足这种需求。
一、地理信息系统(GIS)的概述
地理信息系统(即GIS技术)是以地理空间数据库为基础,在计算机软硬件的支持下,运用系统工程和信息科学的理论,科学管理和综合分析具有空间内涵的地理数据,以提供管理、决策等所需信息的技术系统。它可以制作精度十分复杂的地形和地质图,并能对图形数据与各种专业数据进行一体化管理和空间分析查询,从而为多源信息的综合找矿预测提供了较为理想的平台。GIS技术改变了以往依靠传统手工图纸进行成矿数据管理、采集、处理与解释的方式,实现了各类海量数据进行集成、综合管理、快速处理与分析、可视化输出的现代化技术过程。
二、在地质找矿中GIS技术应用的优点
GIS技术强大的数据采集、分析、管理功能,为解决环境及资源问题提供了重要途径。在具体的地质找矿工作中,具有以下的优点:
1、完备的数据库系统。GIS技术是一种处理数据输入/出、图件产品的计算机软、硬件系统,它集采集、存储、管理、检索和综合分析各种地理空间信息为一体,涵盖了计算机的各种应用程序和各种地学信息数据,并且还可以有效地组织而成的现实空间信息模型。在地质找矿勘查工作中,地质人员可以通过输入空间材料的数据,形成各种模型,并且可以从视觉、计量和逻辑上对现实空间进行模拟、管理及预测;地质人员可以随意的抽取、组合、传输相关的空间信息,对各类数据所形成的图片进行仿真模型,有效地预测出成矿的规律及岩土成分。
2、先进的空间分析技术。GIS相较于传统找矿方式的主要优势即是其拥有卓越的空间分析技术,GIS的空间计算和分析功能可以对地质体系中的空间关系进行科学的定量定性分析。例如,GIS具有的叠加功能在矿产资源勘察中具有很高的应用频率,通过将各种图形信息进行重叠放置可以有效提取矿产信息,并对各项成矿信息进行严密的分析计算,而在重叠放置的过程中没有数量限制,可以有效納入更多的数据信息,进而可以增加其计算精准度。
3、对图形的处理更加灵活。可以把GIS看作是一个图形处理和显示的系统。图形可以是矢量格式,也可以是栅格格式。在该系统中,包含有许多图形的算法,可以充分地实现图形的生成、修改、布局、装饰、显示、可视化等操作的需求。并且可以表达和描述复杂的空间实体,并且对所收集到的图形、图像数据和属性数据高度集成的地理信息系统数据库,为全面管理地质勘查找矿设计信息提供了可能,为建立完善的地质模型、预测成矿、地形特点等,提高了全面可靠的信息。GIS的可视化操作能力,为地质找矿勘查工作提供了一个可视化操作平台,为判断与决策提供了必要的信息数据支持。
4、强大的综合分析能力.GIS可以进行大量的数据模拟与分析,例如地震数据处理、遥感数据处理、地球化学数据处理等。为丰富多彩的空间信息分析与综合提供了有力的新工具。GIS的空间数据分析功能还有拓扑叠加、缓冲区分析数字地形分析等,为建立完善的专业设计、分析、评价、辅助决策模型提供了强有力的分析工具。
三、GIS技术在地质找矿成矿预测中的应用分析
GIS成矿预测的技术只适用于具备足够数量的已知矿床的地区,因为需要利用这些已知矿床来证实矿化的空间关系。然而,在工作程度较低的几乎不含有已知矿床的地区,则需要借助于概念方法来进行成矿预测,这种方法包括下述三个步骤:
1、建立知识库。首先需要建立导致矿床形成因素及过程的知识库,然后把它们转化为局域范围(数十公里)或区域范围(数百公里)的GIS成因准则。由于大多数矿床的面积都小于3k㎡,因而无论是在局域或大区域成矿预测中都不能直接提供目标矿床的位置。不过,大多数矿床都是多种地质过程共同作用的产物,其中的许多地质过程在这样的大范围内都是可以成图的。从而,分析某个地区的成矿潜力,很重要的一点是把矿床看作是一个完整的区域成矿系统中的一个微小部分。根据这种认识,成矿系统可以认为包括六个主要的组成部分:(1)驱动成矿系统的能源;(2)配位体的来源;(3)矿质的来源;(4)搬运通道;(5)圈闭区;(6)出流区。这种方法要求证实上述每个成矿分量可能促成矿化的潜在要素。
2、建立GIS数据库。条件优越的成矿地质、具有较多地学资料的区带要优先选择,或在重点勘查区优先试用地理信息系统(GIS)技术,只有在试行得以认可的基础上,才能使一套具有高度可行性的地理信息系统(GIS)系统的衡量标准得以建立,才能建设一个更具合理性和实用性的信息空间数据库建设,才能对信息进行综合分析。
3、开发评价成矿潜力的子程序。这一步骤涉及到发展和改进成矿预测的方法,主要有三个模块:(1)专用模拟模块。该模块实际上是一个简单的“黑箱”专家系统,它能使用户选择某个特殊的矿床类型以及包括研究区的某个GIS数据库的名称,该模块然后询问该GIS数据库并圈定满足全部矿床预测准则的区域。该模块的不足之处在于:A.必须定义矿床类型的特征,从而它不能圈定新的矿床类型的远景区;B.它要求以严格的方式建立区域数据库,所命名的所有专题和属性都必须与该专家系统数据库相同。(2)相互作用模拟模块。相互作用模拟模块更灵活,并能使地质人员在一套指定的专题中定义专门的搜索参数而建立用户模型。换句话说,该方法使地质人员能够定义构成某个未知矿床类型的异常岩石类型和其他地质特征;该模块要求用户具有广博的成矿系统的知识。完成分析以后,研究区内任何已知矿床都可用于检验相互作用模拟的结果。(3)类模拟模块。该模块用于检验矿化已知区域GIS内重要的地球物理异常。类模拟模块能使用户选择某个重要的地区并根据GIS数据库内所有专题的内容确定选择区的特殊地学显示,然后该模块证实具有类似特征的所有其他地区,最后产生一份二元图,把所选择的地区分成类似或不类似于该重要区的区域。
结束语
GIS技术在地质找矿中的应用日益成熟,从而对地质找矿人员提出更多的要求。一些标准化措施、工作规范会相继出现,研究人员应严格根据GIS分析要求采集原始数据,完成研究手段从通用GIS到专用GIS的根本转变。
参考文献
[1]吕增泰.地质勘查与找矿技术探析[J].中国高新技术企业,2010( 12)
[2]王玉莉等.基于GIS技术的矿产资源信息化现状及分析[J].农业网络信息,2014(09)
[3]王菁等.地理信息系统在矿产资源勘查领域中的应用[J].技术与创新管理.2009(2)
[4]吕法海.矿产勘查工作中地质工作方法的应用[J].城市地理,2014(14)
关键词:GIS技术;地质找矿;优点; 应用
随着地质勘查工作的深入,工程建设规模的扩大,矿山的地质勘查深度及广度的不断拓展,勘察信息需要交流的速度也越来越快,这就迫切地需要一种方便快捷的手段作为勘查信息交流的载体,而GIS技术可以很好地满足这种需求。
一、地理信息系统(GIS)的概述
地理信息系统(即GIS技术)是以地理空间数据库为基础,在计算机软硬件的支持下,运用系统工程和信息科学的理论,科学管理和综合分析具有空间内涵的地理数据,以提供管理、决策等所需信息的技术系统。它可以制作精度十分复杂的地形和地质图,并能对图形数据与各种专业数据进行一体化管理和空间分析查询,从而为多源信息的综合找矿预测提供了较为理想的平台。GIS技术改变了以往依靠传统手工图纸进行成矿数据管理、采集、处理与解释的方式,实现了各类海量数据进行集成、综合管理、快速处理与分析、可视化输出的现代化技术过程。
二、在地质找矿中GIS技术应用的优点
GIS技术强大的数据采集、分析、管理功能,为解决环境及资源问题提供了重要途径。在具体的地质找矿工作中,具有以下的优点:
1、完备的数据库系统。GIS技术是一种处理数据输入/出、图件产品的计算机软、硬件系统,它集采集、存储、管理、检索和综合分析各种地理空间信息为一体,涵盖了计算机的各种应用程序和各种地学信息数据,并且还可以有效地组织而成的现实空间信息模型。在地质找矿勘查工作中,地质人员可以通过输入空间材料的数据,形成各种模型,并且可以从视觉、计量和逻辑上对现实空间进行模拟、管理及预测;地质人员可以随意的抽取、组合、传输相关的空间信息,对各类数据所形成的图片进行仿真模型,有效地预测出成矿的规律及岩土成分。
2、先进的空间分析技术。GIS相较于传统找矿方式的主要优势即是其拥有卓越的空间分析技术,GIS的空间计算和分析功能可以对地质体系中的空间关系进行科学的定量定性分析。例如,GIS具有的叠加功能在矿产资源勘察中具有很高的应用频率,通过将各种图形信息进行重叠放置可以有效提取矿产信息,并对各项成矿信息进行严密的分析计算,而在重叠放置的过程中没有数量限制,可以有效納入更多的数据信息,进而可以增加其计算精准度。
3、对图形的处理更加灵活。可以把GIS看作是一个图形处理和显示的系统。图形可以是矢量格式,也可以是栅格格式。在该系统中,包含有许多图形的算法,可以充分地实现图形的生成、修改、布局、装饰、显示、可视化等操作的需求。并且可以表达和描述复杂的空间实体,并且对所收集到的图形、图像数据和属性数据高度集成的地理信息系统数据库,为全面管理地质勘查找矿设计信息提供了可能,为建立完善的地质模型、预测成矿、地形特点等,提高了全面可靠的信息。GIS的可视化操作能力,为地质找矿勘查工作提供了一个可视化操作平台,为判断与决策提供了必要的信息数据支持。
4、强大的综合分析能力.GIS可以进行大量的数据模拟与分析,例如地震数据处理、遥感数据处理、地球化学数据处理等。为丰富多彩的空间信息分析与综合提供了有力的新工具。GIS的空间数据分析功能还有拓扑叠加、缓冲区分析数字地形分析等,为建立完善的专业设计、分析、评价、辅助决策模型提供了强有力的分析工具。
三、GIS技术在地质找矿成矿预测中的应用分析
GIS成矿预测的技术只适用于具备足够数量的已知矿床的地区,因为需要利用这些已知矿床来证实矿化的空间关系。然而,在工作程度较低的几乎不含有已知矿床的地区,则需要借助于概念方法来进行成矿预测,这种方法包括下述三个步骤:
1、建立知识库。首先需要建立导致矿床形成因素及过程的知识库,然后把它们转化为局域范围(数十公里)或区域范围(数百公里)的GIS成因准则。由于大多数矿床的面积都小于3k㎡,因而无论是在局域或大区域成矿预测中都不能直接提供目标矿床的位置。不过,大多数矿床都是多种地质过程共同作用的产物,其中的许多地质过程在这样的大范围内都是可以成图的。从而,分析某个地区的成矿潜力,很重要的一点是把矿床看作是一个完整的区域成矿系统中的一个微小部分。根据这种认识,成矿系统可以认为包括六个主要的组成部分:(1)驱动成矿系统的能源;(2)配位体的来源;(3)矿质的来源;(4)搬运通道;(5)圈闭区;(6)出流区。这种方法要求证实上述每个成矿分量可能促成矿化的潜在要素。
2、建立GIS数据库。条件优越的成矿地质、具有较多地学资料的区带要优先选择,或在重点勘查区优先试用地理信息系统(GIS)技术,只有在试行得以认可的基础上,才能使一套具有高度可行性的地理信息系统(GIS)系统的衡量标准得以建立,才能建设一个更具合理性和实用性的信息空间数据库建设,才能对信息进行综合分析。
3、开发评价成矿潜力的子程序。这一步骤涉及到发展和改进成矿预测的方法,主要有三个模块:(1)专用模拟模块。该模块实际上是一个简单的“黑箱”专家系统,它能使用户选择某个特殊的矿床类型以及包括研究区的某个GIS数据库的名称,该模块然后询问该GIS数据库并圈定满足全部矿床预测准则的区域。该模块的不足之处在于:A.必须定义矿床类型的特征,从而它不能圈定新的矿床类型的远景区;B.它要求以严格的方式建立区域数据库,所命名的所有专题和属性都必须与该专家系统数据库相同。(2)相互作用模拟模块。相互作用模拟模块更灵活,并能使地质人员在一套指定的专题中定义专门的搜索参数而建立用户模型。换句话说,该方法使地质人员能够定义构成某个未知矿床类型的异常岩石类型和其他地质特征;该模块要求用户具有广博的成矿系统的知识。完成分析以后,研究区内任何已知矿床都可用于检验相互作用模拟的结果。(3)类模拟模块。该模块用于检验矿化已知区域GIS内重要的地球物理异常。类模拟模块能使用户选择某个重要的地区并根据GIS数据库内所有专题的内容确定选择区的特殊地学显示,然后该模块证实具有类似特征的所有其他地区,最后产生一份二元图,把所选择的地区分成类似或不类似于该重要区的区域。
结束语
GIS技术在地质找矿中的应用日益成熟,从而对地质找矿人员提出更多的要求。一些标准化措施、工作规范会相继出现,研究人员应严格根据GIS分析要求采集原始数据,完成研究手段从通用GIS到专用GIS的根本转变。
参考文献
[1]吕增泰.地质勘查与找矿技术探析[J].中国高新技术企业,2010( 12)
[2]王玉莉等.基于GIS技术的矿产资源信息化现状及分析[J].农业网络信息,2014(09)
[3]王菁等.地理信息系统在矿产资源勘查领域中的应用[J].技术与创新管理.2009(2)
[4]吕法海.矿产勘查工作中地质工作方法的应用[J].城市地理,2014(14)