融合区域和边缘特征的水平集水下图像分割

来源 :中国图象图形学报 | 被引量 : 0次 | 上传用户:x360791581
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目的水平集模型是图像分割中的一种先进方法,在陆地环境图像分割中展现出较好效果。特征融合策略被广泛引入到该模型框架,以拉伸目标—背景对比度,进而提高对高噪声、杂乱纹理等多类复杂图像的处理性能。然而,在水下环境中,由于水体高散射、强衰减等多因素的共同作用,使得现有图像特征及水平集模型难以适用于对水下图像的分割任务,分割结果与目标形态间存在较大差异。鉴于此,提出一种适用于水下图像分割的区域—边缘水平集模型,以提高水下图像目标分割的准确性。方法综合应用图像的区域特征及边缘特征对水下目标进行辨识。对于区域特征
其他文献
目的基于非负矩阵分解的高光谱图像无监督解混算法普遍存在着目标函数对噪声敏感、在低信噪比条件下端元提取和丰度估计性能不佳的缺点。因此,提出一种基于稳健非负矩阵分解的高光谱图像混合像元分解算法。方法首先在传统基于非负矩阵分解的解混算法基础上,对目标函数加以改进,用更加稳健的L_1范数作为重建误差项,提高算法对噪声的适应能力,得到新的无监督解混目标函数。针对新目标函数的非凸特性,利用梯度下降法对端元矩阵
目的遥感卫星幅宽较大,成像区域内的薄云和雾很难区分,云雾降低了遥感影像的解译精度和对目标地物判别的准确性。传统的云雾去除方法是通过调整图像的对比度和饱和度来提高重建图像的质量,对不均匀分布云雾的适应性不强。为此,本文以"高分二号"(GF-2)遥感数据为例,提出一种结合高斯曲率滤波的雾度图(haze thickness map,HTM)求解算法。方法采用遥感影像的红波段进行HTM求解,首先通过不重叠
目的针对图像合成配准算法中鲁棒性差及合成图像特征信息不足导致配准精度不高的问题,提出了基于残差密集相对平均条件生成对抗网络(residual dense-relativistic average conditional generative adversarial network,RD-RaCGAN)的多模态脑部图像配准方法。方法相对平均生成对抗网络中的相对平均鉴别器能够增强模型稳定性,条件生成对