论文部分内容阅读
目的在自动化和智能化的现代生产制造过程中,视频异常事件检测技术扮演着越来越重要的角色,但由于实际生产制造中异常事件的复杂性及无关生产背景的干扰,使其成为一项非常具有挑战性的任务。很多传统方法采用手工设计的低级特征对视频的局部区域进行特征提取,然而此特征很难同时表示运动与外观特征。此外,一些基于深度学习的视频异常事件检测方法直接通过自编码器的重构误差大小来判定测试样本是否为正常或异常事件,然而实际情况往往会出现一些原本为异常的测试样本经过自编码得到的重构误差也小于设定阈值,从而将其错误地判定为正常事件