论文部分内容阅读
为分析具有高非线性强度下的偏微分方程的初值问题,简化变量分离等方法带来的繁杂计算,研究了一类完全非线性Sine-Gordon方程以及它的近似方程(在|up|很小的情况下),经过适当的函数变换,运用改进的Ado-mian分解法解决了一些特殊情况下它们的初值问题,结合Talyor级数展开式,得到了一些精确解:扭结解(kink)、紧孤子解(compacton)、多重紧孤子解、compacton-kink解。另外运用线性化的方法结合不同形式的解得到它们一些更加丰富的新形式的精确解。