论文部分内容阅读
【目的】建立玉米品种的叶片透射图像特征数据库,研究特征随品种的变化规律,分析各类特征的识别效果,为进一步研究玉米生长期间的机器视觉品种识别提供依据。【方法】以生产中推广的21个常规玉米品种为供试材料,分别采集拔节期、小喇叭口期、大喇叭口期、抽雄开花期4个生育时期的玉米叶片。在灯箱内,采集每一叶片的高画质透射图像,共计420张。基于Matlab R2009a开发了"玉米叶片特征提取与识别软件",包括图像预处理、特征提取、神经网络识别和阈值选取4个功能模块。依据开发的特征识别平台,对玉米叶片透射图像进行图像预处理和特征提取。提取形态类、颜色类和纹理类共计48个特征,特征数据量共计20 160条。分析48个特征品种间的变异系数,研究玉米叶片透射图像特征随品种的变化规律。建立BP神经网络模型进行综合识别,分析不同时期单特征的识别效果,寻找玉米叶片透射图像中品种区分能力较强的重要特征。进一步分析不同时期3大类特征及其组合的识别效果。【结果】在玉米的4个生育时期,叶片透射图像3类特征品种间的变异系数差异比较明显,颜色类特征变异系数最大,其次是纹理类特征变异系数,形态类特征变异系数最小,并且这种差异随着玉米的生长十分稳定。在玉米的4个生育时期,叶片透射图像48个特征的品种识别率差异比较明显,为9.52%—29.33%。R分量的标准差、短轴长、H分量的标准差、等面圆直径、H分量的平均值、V分量的标准差、B分量的标准差、不变矩6、椭圆度、S分量的平均值、外接凸多边形面积、B分量的平均值、平滑度、S分量的峰度、S分量的标准差的识别率较高,平均识别率在18%以上。单类特征中,颜色类特征识别率最高,平均86.76%;纹理类特征次之,平均为78.05%;形态类特征最低,平均为68.67%。颜色类特征和纹理类特征识别的稳定性较高,纹理类特征识别效果更稳定一些。组合特征中,形态+颜色特征组合识别率最高,平均识别率为92.29%;颜色+纹理类特征组合次之,平均为90.29%;形态+纹理类特征组合识别率最低,但平均识别率也达到了87.43%。在拔节期,3类特征组合的识别率无明显差异,且都在91%以上。在小喇叭口期,颜色+纹理特征组合识别率大幅上升,形态+颜色特征组合识别率小幅下降,形态+纹理特征组合识别率下降较大,但是仍然维持在82%以上。在其他3个时期,形态+纹理特征组合和颜色+纹理特征组合识别率差别不大,并且形态+颜色特征组合识别率相对较高。【结论】研究结果为玉米叶片透射图像特征的研究与应用提供了比较系统全面的数据,为生长期间玉米品种的识别提供了新的方法和量化依据,也必将在其他作物的识别方面发挥很好的借鉴作用。