论文部分内容阅读
如何进行适应不同场景的人群异常检测是视频监控领域的研究难点。目前主流的人群行为特征表达式是基于HOF的,其中基于多尺度MHOF是主流方法,但由于多尺度MHOF特征是基于等距划分场景区域的局部特征,因而不是人类观察外界场景的方式。团块特征是基本符合人类观察事物的方式,因此提出基于Blob团块的MHOF特征提取算法,并联合Hog特征,应用多层递归神经网络提出了异常行为检测的算法框架。在3个数据集上进行实验,结果表明,该算法优于基于多尺度MHOF特征的异常行为检测方法。