论文部分内容阅读
为了在实际生产过程中及时发现轴承早期的弱故障,避免因轴承原因而发生的生产安全和质量事故,针对轴承在持续工作时不宜停机对其进行全面检查的问题,通过基于一维卷积神经网络和快速傅立叶变换等轴承信号状态分类方法,进行了轴承振动信号检测分类和数据处理研究。研究得到了快速准确识别轴承故障及分类的方法,最终利用该方法对528个测试样本进行识别的准确率达到100%。