论文部分内容阅读
实际工业生产过程中,系统的数据带有测量噪声。Ⅱ型模糊集的二阶隶属度用来表征一阶隶属度的模糊度,这种模糊度的增加意味着处理不确定信息能力增加。因此,提出了一种基于Ⅱ型模糊集的T-S模糊建模方法来减少由噪声带来不确定信息的影响。首先采用改进的最小邻域算法对带有测量噪声的数据进行聚类,继而确定Ⅱ型模糊集的一阶隶属度,接着根据数据的聚类信息采用高斯混和模型得到二阶隶属度值,然后用正交最小二乘算法确定模糊模型的后件参数,最后通过仿真实验来验证该方法的有效性。