论文部分内容阅读
目的为解决SVM分类器的分类模式难以为人类专家所理解等问题而提出一种有关InterRBF算法的新思路。方法通过将RBF核函数将其展开成麦克劳林级数,并从展开式中挖掘对分类分析起重要作用的关联规则,从而在SVM的分类模式中学习出关联规则分类器。结果改进后的SVM分类器具有较好的分类准确度;改变了当前研究从SVM的分类模式中抽取规则的方法仅限于IF-TEHN规则或者学习出决策树的状况。结论从RBF核函数抽取关联分类规则,对于在难以理解的知识中提取可理解的表达规则是可行的方法。