论文部分内容阅读
分形理论在图像的纹理识别中得到了广泛应用,由于分形维数不能反映图像的空间信息,容易造成误识别。针对该问题并结合声纳图像的特点,通过提升结构构造了Haar小波,并将提升小波变换同分形理论相结合,利用小波分解的多分辨率特点和分形维数的多尺度特性,提高图像的识别率。采用Levenberg-Marquardt(L-M)算法优化的BP神经网络对不同信噪比的声纳图像进行分类识别。实验结果表明,文中方法不论在识别率还是识别时间上均优于传统纹理识别方法。