论文部分内容阅读
边界是一种有用的模式,为了有效识别边界,根据边界点周围密度不均匀,提出了一种边界点检测算法——BDKD。该算法用数据对象的k-近邻距离与其邻域内数据对象的平均k-近邻距离之比定义其k-离群度,当k-离群度超过阈值时即确定为边界点。实验结果表明,BDKD算法可以准确检测出各种聚类边界,并能去除噪声,特别是对密度均匀的数据集效果理想。