论文部分内容阅读
针对基于概率统计的ML-kNN算法只能对每个独立的标签进行分析,忽略了真实世界中标签间的相关性,提出了一种联系标签相关性的ML-kNN算法(S-ML-kNN)。该方法对训练集进行扩展,并按照标签间的二阶组合来构造新的标签,融合了标签之间的相关性。实验结果表明,S-ML-kNN算法优于ML-kNN算法。