论文部分内容阅读
为改进基于机器视觉的棉花异性纤维在线检测效率,提出一种基于费舍尔评分与离散粒子群优化的棉花异性纤维特征选择方法。该方法将费舍尔评分滤波式特征选择方法及基于离散粒子群优化的捆绑式特征选择方法组合在一起,首先利用费舍尔评分方法过滤噪声特征,然后利用离散粒子群算法从已去噪的特征集中选取最优特征子集。提出的方法应用于棉花异性纤维数据集,并与费舍尔评分方法、离散粒子群方法、遗传算法、蚁群算法进行对比,试验结果表明该方法可以更有效地选择出有较少特征数目、较高分类精度的特征子集。从75个棉花异性纤维原始特征中选出18个