论文部分内容阅读
在高马赫数飞行下,用燃料冷却超燃冲压发动机壁面的冷却需求量大于发动机燃烧量。为了降低燃料的冷却量以及实现燃料冷却量和燃烧量的匹配,采用可用能分析法对超燃冲压发动机壁面热量的利用潜力进行分析。发动机壁面热量特性及燃料的冷却特性决定可用能大小。根据发动机壁面温度分布、热流密度分布及燃料的冷却过程温度分布计算可用能。该方法得出:在壁面最高温度为1200K时,传入壁面的热量为554.4k W,其中理论可用能为331.6k W。没有利用其热量实现热量转换时需要的燃料冷却流量为0.616kg/s,最大限度利用热量实现能量转换输出可用功时只需要燃料冷却流量为0.2476kg/s,降低了燃料的冷却需求量。
At high Mach numbers, the cooling requirement for fuel-cooled scramjet engine walls is greater than the engine’s combustion capacity. In order to reduce the cooling capacity of the fuel and to achieve the matching of the fuel cooling capacity and the combustion capacity, the potential of the heat utilization of the scramjet engine wall surface can be analyzed by using the energy analysis method. Engine wall heat characteristics and fuel cooling characteristics determine the available energy size. Available energy is calculated from the engine wall temperature distribution, heat flux density distribution, and fuel cooling process temperature distribution. The method results in that when the maximum wall temperature is 1200K, the heat input into the wall is 554.4kW, of which the theoretical available energy is 331.6kW. Without the use of its heat to achieve heat conversion required fuel cooling flow of 0.616kg / s, the maximum use of heat to achieve energy conversion output available work only fuel cooling flow of 0.2476kg / s, reducing the cooling needs of the fuel.