论文部分内容阅读
以神经网络为代表的人工智能模型对股票价格具有良好的预测效果,但是该智能模型侧重于单步预测,很难满足实际股票预测的要求。提出基于小波和神经网络相结合的股票指数多步预测智能模型。选取上证50指数为建模数据,运用小波分解将上证50指数收盘价序列分解成不同尺度的分层数据,依据迭代策略,利用BP神经网络分别预测小波分解后的各层数据,最后将各层的预测结果使用小波重构成原始股票收盘价的预测数值。结果表明,基于小波神经网络的多步预测模型具有良好的多步预测效果。