论文部分内容阅读
将卷积神经网络(convolutional neural networks,CNN)声学模型应用于中文大词表连续电话语音识别任务中,分析了卷积层数、滤波器参数等变量对CNN模型性能的影响,最终在中文电话语音识别测试中,CNN模型相比传统的全连接神经网络模型取得了识别字错误率1.2%的下降。由于卷积结构的复杂性,常规的神经网络加速方法如定点量化和SSE指令加速等方法对卷积运算的加速效率较低。针对这种情况,对卷积结构进行了优化,提出了2种卷积矢量化方法:权值矩阵矢量化和输入矩阵矢量化对卷积运算进行改善。结果表