论文部分内容阅读
针对日前电价预测问题,利用极限学习机建立预测模型.鉴于极限学习机在训练前随机产生输入权重和隐藏节点偏置,可能导致预测结果不稳定以及预测精度太低的问题,提出了一种基于遗传算法(GA)和极限学习机(ELM)的预测方法.首先利用遗传算法对极限学习机随机生成的参数进行寻优,然后根据优化后的参数建立基于GA-ELM的电价预测模型.最后以此模型对PJM电力市场的日前电价进行预测.结果表明,相比ELM和BP神经网络,GA-ELM具有更高的预测精度.