论文部分内容阅读
【摘 要】输电线路的安装随着电力能源的应用需求的提高也逐渐增加,输电线路安装之后经常会发生事故,基本的事故为雷击。由于雷击是一种自然现象,不同地区,不同季节的发生频率不一,所以解决起来难度较低,针对我国目前防雷举措的现状,笔者提出了部分防雷意见,以供相关电力工作人员的参考和借鉴。
【关键词】电力系统;防雷措施;输电线路
引言
输电线路和输电设备受到建设的需要,经常是露天安装,受到自然环境的影响程度也就相对比较大。对于输电线路而言,最主要的天气影响即为雷击。雷击产生的强电流与输电线连接时可能致使输电线路毁坏,影响电力系统的正常运作,同时也可能引发火灾,或者带来相应的生命财产损失。由于我国幅员辽阔,电力需求比较大,因此受到不同环境和地质经济等因素的影响,输电线路安装的质量也不同,引发的事故程度不同,引发的事故原因也不同,由于原因不明确,所以对于输电线路的防雷技术的研究难度相对来说比较大。
下面将对不同地区的输电线路雷击引发原因进行科学的概括,只有明确了事故发生的原因,才能具体问题具体分析,提出进一步的防雷措施。
1、雷害原因分析
输电线路雷击闪电是由雷云放电造成的过电压通过线路杆塔建立放电通道,导致线路绝缘击穿,这种过电压也称为大气过电压,可分为直击雷过电压和感应雷过电压。雷击主要是通过建立一个放电泄流通道,从而使大地感应电荷中和雷云中的异种电荷,因此雷击和接地装置的完好性有直接的关系。
输电线路基本受到直击雷电的影响,直击雷又分为反击和绕击,都严重危害线路安全运行。在制定防雷措施之前,应该对该地的主要雷击类型进行系统的把握,只有这样才能具体问题具体分析,使得制定的防雷举措合理有效。
同时反击雷也是一种常见的现象,它主要与绝缘强度和杆塔接地电阻有关,一般发生在绝缘弱相,无固定闪络相别,所以对于反击雷过电压应采取降低杆塔接地电阻,加强绝缘,提高耐雷水平。绕击雷过电压是雷电绕过避雷线直接击中导线而出现的雷过电压,主要与雷电流幅值,线路防雷保护方式,杆塔高度,特殊地形有关,主要发生在两边相。目前对绕击雷过电压采取的主要措施是减少避雷线保护角,安装避雷器等。
经过电力工作者多年工作经验的积累和相关数据的研究,基本可以确定不同地形的雷击发生概率不同,而且雷击的具体种类也相应的有所差异,比如山区线路由于地形因素的影响和有效高度的增加,绕击率较高;平原,丘陵地区的线路则以反击为主。所以针对不同的地形也应该采取区别的防雷措施。
雷击现象的发生概率和发生类型是由多种原因导致形成的,只有进行实地的考察和具体数据的分析,才能基本的进行雷击类型和概率的确定,因此工作人员需要进行必要的实地考察。
2、防雷措施
防雷措施的制定主要是为了降低输电线路的受到雷击影响的概率,保证电力系统安全有效的运行。而输电线路受到雷击的影响概率时因地而异的。所以,防雷措施的制定是一项复杂而系统的工作,需要考虑到线路经过地区的地质条件、气候条件、土壤构成。社会经济条件等等。同时防雷措施的制定还应该从经济角度出发,尽量减少不必要的经济支出,节约电力系统的投资成本,为此,除去安装必要的防雷装置以外,还应该注意以下几个具体的环节。
2.1减小外边相避雷线的保护角或者采用负角保护
忽略了山坡对防雷保护角的影响,则造成了杆塔防雷保护角不能满足防雷设计的实际要求,增加了线路闪络次数,影响了电网安全运行。针对山区运行线路容易受绕击的情况,建议采用有效屏蔽角公式计算校验杆塔有效保护角,以便设计时针对保护角偏大情况采取相应措施减少雷电绕击概率。
2.2加强绝缘和采用不平衡绝缘方式
在雷电活动强烈地段、大跨越高杆塔及进线段,应增加绝缘子片数。通过适当增加绝缘子片数,增大导线和避雷线间的距离,达到加强绝缘的目的。随着同杆塔架设双回线路的不断出现,当普通的防雷措施不能满足要求时,采用不平衡绝缘方式可避免双回线路在遭受雷击时同时跳闸。其原理是两回路的绝缘子片数不同,遇到雷击情况时,绝缘子片数少的一回路先闪络,闪络后的导线相当于避雷线,增加了对另一回路导线的耦合作用,提高了另一回路的耐雷水平,使之不发生闪络,保持连续供电。
2.3接地装置的处理
a.高压输电线路耐雷水平随杆塔接地电阻的增加而降低。对土壤电阻率较高地区,应选择更换接地网形式和置换土壤的方法,达到降阻。在雷雨季节前,对雷击多发区域线路应按规程要求的方法,进行杆塔接地电阻测量;b.接地装置埋深,要求大于0.6m。由于接地装置是深埋于地下的,所以要求工作人员要做好防腐的工作处理,同时应该进行定期的检查,确保接地装置没有被人为破坏。同时对于地下线路的挖掘还需要进行相应的质量监督,只有符合质量标准的才能进行下一步的线路安装,对于不合格的挖掘工作应该及时指出,限期整改,整改合格后才能继续施工。c.降低杆塔接地电阻,还需要确保架空地线、接地引下线、地网相互之间的良好连接。
2.4安装避雷器
避雷线的架设在一定程度上降低了导线上的感应过电压,但不是完全消除,这就要求安装避雷器来将雷电流泄放到大地,从而限制过电压,保障输电线路及设备的安全。
2.5装设自动重合闸装置
由于线路绝缘具有自恢复性能,大多数雷击造成的闪络事故在线路跳闸后能够自行消除。因此,安装自动重合闸装置对于降低线路的雷击事故率具有较好的效果。
2.6加强雷电监测,消除设备隐患
雷击闪络中单相闪络机会最多,闪络地点也是一基杆塔比较多见,但有时也有连续几基同时闪络,或相隔几基闪络的。所以,故障巡查时,不能只查到一个故障点就结束故障巡视,而应把全区段查完。对110kV及以上输电线路可以应用雷电定位系统,雷电定位系统是一种全自动实时雷电监测系统。该系统的最大优势是可以实现机械自动雷电监测,根据监测的结果能够准确快速的定位故障发生点,提高了工作效率。同时人们可以根据自动监测的数据进行系统的分析,总结经验,通过自动化系统生成的数据具有更高的准确性和可靠性。最后,通过自动监测系统的安装能够减少工作人员的工作量,节省电力系统的劳务成本输出。
3、結语
综上所述,输电线路的雷击现象是一种自能减少而不能杜绝的客观存在现象,首先人们应该对于雷击现象树立正确意识,提高防雷的安全认识,其次,应该对不同地区的输电线路进行实地的考察,提出合理的防雷措施,最后防雷措施的安装应该在统筹兼顾的基本指导思想下展开,保证防雷措施既能保证电力系统的安全运行又能节省电力系统的资金投入。这需要广大电力工作者不断总结经验,并进行必要的知识理论学习,只有这样才能逐渐完善输电线路的防雷技术。
参考文献
[1]丁颂声.浅谈高压输电线路的防雷[J].科技资讯,2007(10)
[2]郭春宇.浅析送电线路的防雷措施[J].民营科技,2009(10)
[3]毛和君.输电线路雷害原因分析及防雷技术研究[J].中国科技信息,2007(16)
【关键词】电力系统;防雷措施;输电线路
引言
输电线路和输电设备受到建设的需要,经常是露天安装,受到自然环境的影响程度也就相对比较大。对于输电线路而言,最主要的天气影响即为雷击。雷击产生的强电流与输电线连接时可能致使输电线路毁坏,影响电力系统的正常运作,同时也可能引发火灾,或者带来相应的生命财产损失。由于我国幅员辽阔,电力需求比较大,因此受到不同环境和地质经济等因素的影响,输电线路安装的质量也不同,引发的事故程度不同,引发的事故原因也不同,由于原因不明确,所以对于输电线路的防雷技术的研究难度相对来说比较大。
下面将对不同地区的输电线路雷击引发原因进行科学的概括,只有明确了事故发生的原因,才能具体问题具体分析,提出进一步的防雷措施。
1、雷害原因分析
输电线路雷击闪电是由雷云放电造成的过电压通过线路杆塔建立放电通道,导致线路绝缘击穿,这种过电压也称为大气过电压,可分为直击雷过电压和感应雷过电压。雷击主要是通过建立一个放电泄流通道,从而使大地感应电荷中和雷云中的异种电荷,因此雷击和接地装置的完好性有直接的关系。
输电线路基本受到直击雷电的影响,直击雷又分为反击和绕击,都严重危害线路安全运行。在制定防雷措施之前,应该对该地的主要雷击类型进行系统的把握,只有这样才能具体问题具体分析,使得制定的防雷举措合理有效。
同时反击雷也是一种常见的现象,它主要与绝缘强度和杆塔接地电阻有关,一般发生在绝缘弱相,无固定闪络相别,所以对于反击雷过电压应采取降低杆塔接地电阻,加强绝缘,提高耐雷水平。绕击雷过电压是雷电绕过避雷线直接击中导线而出现的雷过电压,主要与雷电流幅值,线路防雷保护方式,杆塔高度,特殊地形有关,主要发生在两边相。目前对绕击雷过电压采取的主要措施是减少避雷线保护角,安装避雷器等。
经过电力工作者多年工作经验的积累和相关数据的研究,基本可以确定不同地形的雷击发生概率不同,而且雷击的具体种类也相应的有所差异,比如山区线路由于地形因素的影响和有效高度的增加,绕击率较高;平原,丘陵地区的线路则以反击为主。所以针对不同的地形也应该采取区别的防雷措施。
雷击现象的发生概率和发生类型是由多种原因导致形成的,只有进行实地的考察和具体数据的分析,才能基本的进行雷击类型和概率的确定,因此工作人员需要进行必要的实地考察。
2、防雷措施
防雷措施的制定主要是为了降低输电线路的受到雷击影响的概率,保证电力系统安全有效的运行。而输电线路受到雷击的影响概率时因地而异的。所以,防雷措施的制定是一项复杂而系统的工作,需要考虑到线路经过地区的地质条件、气候条件、土壤构成。社会经济条件等等。同时防雷措施的制定还应该从经济角度出发,尽量减少不必要的经济支出,节约电力系统的投资成本,为此,除去安装必要的防雷装置以外,还应该注意以下几个具体的环节。
2.1减小外边相避雷线的保护角或者采用负角保护
忽略了山坡对防雷保护角的影响,则造成了杆塔防雷保护角不能满足防雷设计的实际要求,增加了线路闪络次数,影响了电网安全运行。针对山区运行线路容易受绕击的情况,建议采用有效屏蔽角公式计算校验杆塔有效保护角,以便设计时针对保护角偏大情况采取相应措施减少雷电绕击概率。
2.2加强绝缘和采用不平衡绝缘方式
在雷电活动强烈地段、大跨越高杆塔及进线段,应增加绝缘子片数。通过适当增加绝缘子片数,增大导线和避雷线间的距离,达到加强绝缘的目的。随着同杆塔架设双回线路的不断出现,当普通的防雷措施不能满足要求时,采用不平衡绝缘方式可避免双回线路在遭受雷击时同时跳闸。其原理是两回路的绝缘子片数不同,遇到雷击情况时,绝缘子片数少的一回路先闪络,闪络后的导线相当于避雷线,增加了对另一回路导线的耦合作用,提高了另一回路的耐雷水平,使之不发生闪络,保持连续供电。
2.3接地装置的处理
a.高压输电线路耐雷水平随杆塔接地电阻的增加而降低。对土壤电阻率较高地区,应选择更换接地网形式和置换土壤的方法,达到降阻。在雷雨季节前,对雷击多发区域线路应按规程要求的方法,进行杆塔接地电阻测量;b.接地装置埋深,要求大于0.6m。由于接地装置是深埋于地下的,所以要求工作人员要做好防腐的工作处理,同时应该进行定期的检查,确保接地装置没有被人为破坏。同时对于地下线路的挖掘还需要进行相应的质量监督,只有符合质量标准的才能进行下一步的线路安装,对于不合格的挖掘工作应该及时指出,限期整改,整改合格后才能继续施工。c.降低杆塔接地电阻,还需要确保架空地线、接地引下线、地网相互之间的良好连接。
2.4安装避雷器
避雷线的架设在一定程度上降低了导线上的感应过电压,但不是完全消除,这就要求安装避雷器来将雷电流泄放到大地,从而限制过电压,保障输电线路及设备的安全。
2.5装设自动重合闸装置
由于线路绝缘具有自恢复性能,大多数雷击造成的闪络事故在线路跳闸后能够自行消除。因此,安装自动重合闸装置对于降低线路的雷击事故率具有较好的效果。
2.6加强雷电监测,消除设备隐患
雷击闪络中单相闪络机会最多,闪络地点也是一基杆塔比较多见,但有时也有连续几基同时闪络,或相隔几基闪络的。所以,故障巡查时,不能只查到一个故障点就结束故障巡视,而应把全区段查完。对110kV及以上输电线路可以应用雷电定位系统,雷电定位系统是一种全自动实时雷电监测系统。该系统的最大优势是可以实现机械自动雷电监测,根据监测的结果能够准确快速的定位故障发生点,提高了工作效率。同时人们可以根据自动监测的数据进行系统的分析,总结经验,通过自动化系统生成的数据具有更高的准确性和可靠性。最后,通过自动监测系统的安装能够减少工作人员的工作量,节省电力系统的劳务成本输出。
3、結语
综上所述,输电线路的雷击现象是一种自能减少而不能杜绝的客观存在现象,首先人们应该对于雷击现象树立正确意识,提高防雷的安全认识,其次,应该对不同地区的输电线路进行实地的考察,提出合理的防雷措施,最后防雷措施的安装应该在统筹兼顾的基本指导思想下展开,保证防雷措施既能保证电力系统的安全运行又能节省电力系统的资金投入。这需要广大电力工作者不断总结经验,并进行必要的知识理论学习,只有这样才能逐渐完善输电线路的防雷技术。
参考文献
[1]丁颂声.浅谈高压输电线路的防雷[J].科技资讯,2007(10)
[2]郭春宇.浅析送电线路的防雷措施[J].民营科技,2009(10)
[3]毛和君.输电线路雷害原因分析及防雷技术研究[J].中国科技信息,2007(16)