论文部分内容阅读
机器人建模中存在的不确定性,给机器人精确控制带来了困难,在机器人力控制中尤为明显,制约了力控制在实际生产中的应用。采用模糊控制、神经网络等智能控制方法是解决这些经典控制理论所面临问题的有效手段。文中使用无监督学习的神经网络对不确定性进行在线补偿,提高阻抗控制的力跟踪性能,通过仿真验证了算法的有效性。