论文部分内容阅读
针对3D-CNN能够较好地提取视频中时空特征但对计算量和内存要求很高的问题,本文设计了高效3D卷积块替换原来计算量大的3×3×3卷积层,进而提出了一种融合3D卷积块的密集残差网络(3D-EDRNs)用于人体行为识别。高效3D卷积块由获取视频空间特征的1×3×3卷积层和获取视频时间特征的3×1×1卷积层组合而成。将高效3D卷积块组合在密集残差网络的多个位置中,不但利用了残差块易于优化和密集连接网络特征复用等优点,而且能够缩短训练时间,提高网络的时空