转录组拼接是基因组测序与功能注解问题的一个重要组成部分。为了提高转录组拼接的精度和效率,文中提出了一种新的转录组从头拼接算法StepLink。该算法的主要创新点是提出了
针对目前我国电力机车制动机普遍的落后现状,结合DK-1型电力机车制动机的改进,以微机检测与控制技术和网络通信技术为基础,提出了一种基于CAN总线的制动机通信系统的架构;并在此
针对目前算法不能有效去除高概率的椒盐噪声并保护图像边缘和细节特征的缺点,提出了一种基于二级修复的多方向加权均值滤波算法。在噪声检测阶段,首先利用一个方差参数判断当前像素点与其邻域像素点之间的灰度差异程度,再通过将方差参数和灰度极值相结合的方法检测出图像中的椒盐噪声点。在噪声修复阶段,提出一种二级修复方法来修复噪声点的灰度值。首先利用改进的自适应中值滤波器对椒盐噪声点进行第一级噪声修复;然后利用方差
传统人工神经网络的输入均为向量形式,而图像由矩阵形式表示,因此,在用人工神经网络进行图像处理时,图像将以向量形式输入至神经网络,这破坏了图像的结构信息,从而影响了图像处理的效果。为了提高网络对图像的处理能力,文中借鉴了深度学习的思想与方法,引进了具有矩阵输入的多层前向神经网络。同时,采用传统的反向传播训练算法(BP)训练该网络,给出了训练过程与训练算法,并在USPS手写数字数据集上进行了数值实验。
由于视觉注意预测能够快速、准确地定位图像中的显著区域,因此将视觉注意中的频域信息融入显著性目标检测中,从而有效地在复杂场景中检测显著性目标。首先,采用改进的频域检测方法对图像进行视觉注意预测,将该频域信息融入Focusness特征中计算得到频域信息聚焦特征,并将此特征与颜色特征进行融合得到前景显著图。然后,对RBD背景进行优化,得到背景显著图。最后,对前景显著图、背景显著图进行融合。在ESSCD,