论文部分内容阅读
针对车辆自主定位实时准确的要求,提出一种结合光流法的车辆运动估计优化方法.采用改进的Lucas-Kanade算法跟踪FAST特征点计算其光流;进而对图像间偏移量进行坐标系转换,获得初始坐标系下车辆的运动估计值;基于偏移量与旋转角度误差服从正态分布的假设,优化更新采用光流法的车辆运动结果,最终映射到世界坐标系中获得车辆运行轨迹.通过测试多组不同车辆行驶轨迹,结果表明:该优化方法突出了光流法的实时性并且克服了其精度差的缺点,有效解决了由累积误差引起的轨迹漂移情况,能够提供车辆准确实时的定位输出.相较于基于特征点匹配的车辆定位其计算时间短,与常用的光流法比较,轨迹更加精确、光滑.