论文部分内容阅读
摘要: 针对微电子元器件及其高密度系统制造,特别是大功率器件互连封装中无铅、低温互连而其接头又具有良好高温性能的需求,以作者课题组的研究为例,基于金属纳米颗粒具有高表面能的特性,简要概述其低温烧结连接用于电子封装的原理、纳米颗粒膏的合成、低温烧结连接工艺因素对接头性能的影响及其发展趋势。
关键词: 微连接;电子封装;纳米金属颗粒;多元醇法;低温烧结连接
中图分类号: TG115.28文献标识码:A
0前言
微电子元器件及其微系统封装集成的无铅化是微电子行业发展的必然趋势[1-3]。近20年来,人们投入了大量的精力从事无铅钎料及其钎焊工艺的研究,所研制开发出的低温无铅钎料如低温SnAgCu,SnAg,SnCu等得到了较广泛的应用。然而,与传统的低温含铅钎料相比,在价格、钎焊工艺性及力学性能等方面还存在一定的差距。与此同时,随着微电子系统向高功率甚至大功率、高密度互连集成、宏-微-纳跨尺度结构互连以及多种材料使用等方向发展,一次性实现耐高温互连(如大功率LED、汽车电子器件等需要耐150~400 ℃或甚至更高的互连接头)或者系统多级封装需要前级互连以达到低温连接并具有耐高温特性的需求迫在眉睫[4]。到目前为止,除无铅钎料80Au20Sn具有较良好的高温性能,但价格昂贵外,传统的高温含铅钎料如97Pb3Sn,95Pb5Sn,90Pb10Sn等和无铅钎料如BiAg系、Bi基复合钎料、Zn基钎料等相比,由于互连材料自身熔点的局限性,均无法满足上述耐高温要求[3-5]。因此,在继续研究无铅钎料及其钎焊工艺的同时,探索钎焊以外的其它新型无铅互连材料及其连接技术很有必要。
参考文献:
[1]Bechedahl P. The road to the next generation power modul 100% solder free design[C]. In: Proceedings of 5th Int. Conf. Integrated Power Electron Syst. (CIPS’ 08), Nuremberg, Germany, 2008: 42-48.
[2]马良, 尹立孟, 冼健威, 等. 高温电子封装无铅化的研究进展[J]. 焊接技术, 2009, 38(5): 6-10.
[3]邹贵生, 闫剑锋, 母凤文, 等. 微连接和纳连接的研究新进展[J]. 焊接学报, 2011,32(4): 107-112.
[4]Johnson R W, Evans J L, Jacobsen P, et al. The changing automotive environment: hightemperature electronics[J]. IEEE Transaction on Electronics Packaging Manufacturing, 2004, 27(3):164-176.
[5]McCluskey F P, Dash M, Wang Z, et al. Reliability of high temperatue alternatives[J]. Microelectronics Reliability, 2006, 26:1910-1914.
[6]Allen G L, Bayles R A, Gil W W, et al. Small particle melting of pure metals[J]. Thin Solid Films, 1986, 144: 297-308.
[7]Zhou Y. Microjoining and nanojoining[M]. Woodhead Publishing Ltd., Cambridge, United Kingdom, 2008.
[8]Kim S S. Mechanical properties of nanosilver joints as die attach materials[J]. Journal of Alloys and Compounds, 2012,514,6-19.
[9]Zhang Z, Lu G Q. Pressureassisted lowtemperature sintering of silver paste as an alternative dieattach solution to solderreflow[J]. IEEE Trans. Electron. Packag. Manuf., 2002, 25(4): 279-283.
[10]Bai J G, Zhang Z, Calata J N, et al. Lowtemperature sintered nanoscale silver as a novel semiconductor device metallized substrate interconnect material[J]. IEEE Trans. Compon. Packag. Technol., 2006, 29(3): 589-593.
[11]Bai J G, Lei T G, Calata J N, et al. Control of nanosilver sintering attained through organic binder burnout[J]. J. Mater. Res., 2007, 22(12): 3494-3500.
[12]Lei T G, Calata J N, Lu G Q. Lowtemperature sintering of nanoscale silver paste for attaching largearea (>100 mm2) chips[J]. IEEE Transactions on Components and Packaging Technology, 2010, 33(1): 98-104. [13]Ide E, Angata S, Hirose A, et al. Metalmetal bonding process using Ag metalloorganic nanoparticles[J]. Acta Materialia, 2005, 53(8): 2385-2393.
[14]Morita T, Ide E, Yasuda Y, et al. Study of bonding technology suing silver nanoparticles[J]. Japanese Journal of Applied Physics, 2008, 47(8): 6615-6622.
[15]Akada Y, Tasum H, Hirose A Y, et al. Interfacial bonding mechanism using silver metalloorganic nanoparticles to bulk metals and observation of sintering behavior[J]. Materials Transactions, 2008, 49(7):1537-1545.
[16]Zou Guisheng, Yan Jianfeng, Mu Fengwen, et al. Low temperature bonding of Cu metal through sintering of Ag nanoparticles for high temperature electronic application[J]. The Open Surface Science Journal, 2011, 3:70-75.
[17]Hu A, Guo Y J, Aarifi H, et al. Low temperature sintering of Ag nanoparticles for flexible electronics[J]. Appl. Phys. Lett. 97, 2010: 153117-1—153117-3.
[18]Yan Jianfeng, Zou Guisheng, Wu Aiping, et al. Improvement of bondability by depressing the inhomogeneous distribution of nanoparticles in low temperature bonding process with silver nanoparticles[J]. Journal of Electronic Materials, 2012, 41(7): 1924-1930.
[19]Yan Jianfeng, Zou Guisheng, Wu Aiping, et al. Pressureless bonding process using Ag nanoparticle paste for flexible electronics packaging[J]. Scripta Materialia, 2012, 66: 582-585.
[20]Yan Jianfeng, Zou Guisheng, Wu Aiping, et al. Effect of PVP on the low temperature bonding process using polyol prepared Ag nanoparticle paste for electronic packing application[J]. Journal of Physics: Conference Series 379 (2012) 012024:1-6.
[21]Ogura H, Maruyama M, Matsubashi R, et al. Carboxylatepassivated silver nanoparticles and their application to sintered interconnection: A replacement for high temperature leadrich solders[J]. Journal of Electronic Materials 2010, 39(8): 1233-1240.
[22]Peng P, Hu A, Zhao B, et al. Reinforcement of Ag nanoparticle paste with nanowires for low temperature pressureless bonding[J]. J. Mater Sci, 2012,47:6801–6811.
[23]Peng P, Hu A, Huang H, et al. Roomtemperature pressureless bonding with silver nanowire paste: towards organic electronic and heatsensitive functional devices packaging[J]. J. Mater. Chem., 2012, 22, 12997-13001.
[24]Guo W, Tang S, Zhu Y, et al. A study of sintering bonding using silver nanowires paste[C]. The Proceedings of NMJ 2012, 2-5 Dec., Beijing, China: 63-64.
[25]Lin Luchan, Yan Jianfeng, Liu Lei, et al. High temperature service property evaluation of Agnanoparticle sintered Cu/Cu joints[C]. The Proceedings of NMJ 2012, 2-5 Dec., Beijing, China: 143-144. [26]Hirose A, Tatsumi H, Takeda N, et al. A novel metaltometal bonding process through insitu formation of Ag nanoparticles using Ag2O microparticles[J]. Journal of Physics: Conference Series 2009,165: 012074-1-6.
[27]Ogura T, Nishimura M, Tatsumi H, et al. Evaluation of interfacial bonding utilizing Ag2Oderived silver nanoparticles using TEM observation and molecular dynamics simulation[J]. The Open Surface Science Journal, 2011, 3, 55-59.
[28]Mu Fengwen, Zou Guisheng, Yan Jianfeng, et al. A study on the low temperature sinteringbonding through insitu formation of Ag nanoparticles using Ag2O microparticles[C]. 2011 International Conference on Electronic Packaging Technology & High Density Packaging: 293-301.
[29]Mu Fengwen, Zhao Zhenyu, Zou Guisheng, et al. The effects of Agcoated Cu particles added into microAg2O paste on the sintered joint performance[C]. The Proceedings of NMJ 2012, 2-5 Dec., Beijing, China: 147-148.
[30]Mu Fengwen, Zou Guisheng, Zhao Zhenyu, et al. Bonding of Cu bulks through the low temperature sintering of Ag nanoparticles insitu formed using microAg2O composite paste[C]. The Proceedings of NMJ 2012, 2-5 Dec., Beijing, China: 115-116
[31]Yan J, Zou G, Hu A, et al. Preparation of polymer coated Cu NPs and its applications for lowtemperature bonding[J]. Journal of Materials Chemistry, 2011, 21:15981-15986.
[32]Yasuda Y, Ide E, Morita T. Evaluation of copper oxidebased interconnecting materials[J]. The Open Surface Science Journal, 2011, 3, 123-130.
[33]Morisada Y, Nagaoka T, Fukusumi M, et al. A lowtemperature bonding process using mixed CuAg nanoparticles[J]. Journal of Electronic Materials, 2010, 39[34]Yan Jianfeng, Zou Guisheng, Wu Aiping, et al. Polymerprotected CuAg mixed NPs for lowtemperature bonding application[J]. Journal of Electronic Materials, 2012, 41(7): 1886-1892.
[35]Zhang Yingchuan, Yan Jianfeng, Zou Guisheng, et al. Low temperature sinteringbonding using mixed Cu+Ag nanoparticle paste for packaging application[C]. The Proceedings of NMJ 2012, 2-5 Dec., Beijing, China: 145-146.
关键词: 微连接;电子封装;纳米金属颗粒;多元醇法;低温烧结连接
中图分类号: TG115.28文献标识码:A
0前言
微电子元器件及其微系统封装集成的无铅化是微电子行业发展的必然趋势[1-3]。近20年来,人们投入了大量的精力从事无铅钎料及其钎焊工艺的研究,所研制开发出的低温无铅钎料如低温SnAgCu,SnAg,SnCu等得到了较广泛的应用。然而,与传统的低温含铅钎料相比,在价格、钎焊工艺性及力学性能等方面还存在一定的差距。与此同时,随着微电子系统向高功率甚至大功率、高密度互连集成、宏-微-纳跨尺度结构互连以及多种材料使用等方向发展,一次性实现耐高温互连(如大功率LED、汽车电子器件等需要耐150~400 ℃或甚至更高的互连接头)或者系统多级封装需要前级互连以达到低温连接并具有耐高温特性的需求迫在眉睫[4]。到目前为止,除无铅钎料80Au20Sn具有较良好的高温性能,但价格昂贵外,传统的高温含铅钎料如97Pb3Sn,95Pb5Sn,90Pb10Sn等和无铅钎料如BiAg系、Bi基复合钎料、Zn基钎料等相比,由于互连材料自身熔点的局限性,均无法满足上述耐高温要求[3-5]。因此,在继续研究无铅钎料及其钎焊工艺的同时,探索钎焊以外的其它新型无铅互连材料及其连接技术很有必要。
参考文献:
[1]Bechedahl P. The road to the next generation power modul 100% solder free design[C]. In: Proceedings of 5th Int. Conf. Integrated Power Electron Syst. (CIPS’ 08), Nuremberg, Germany, 2008: 42-48.
[2]马良, 尹立孟, 冼健威, 等. 高温电子封装无铅化的研究进展[J]. 焊接技术, 2009, 38(5): 6-10.
[3]邹贵生, 闫剑锋, 母凤文, 等. 微连接和纳连接的研究新进展[J]. 焊接学报, 2011,32(4): 107-112.
[4]Johnson R W, Evans J L, Jacobsen P, et al. The changing automotive environment: hightemperature electronics[J]. IEEE Transaction on Electronics Packaging Manufacturing, 2004, 27(3):164-176.
[5]McCluskey F P, Dash M, Wang Z, et al. Reliability of high temperatue alternatives[J]. Microelectronics Reliability, 2006, 26:1910-1914.
[6]Allen G L, Bayles R A, Gil W W, et al. Small particle melting of pure metals[J]. Thin Solid Films, 1986, 144: 297-308.
[7]Zhou Y. Microjoining and nanojoining[M]. Woodhead Publishing Ltd., Cambridge, United Kingdom, 2008.
[8]Kim S S. Mechanical properties of nanosilver joints as die attach materials[J]. Journal of Alloys and Compounds, 2012,514,6-19.
[9]Zhang Z, Lu G Q. Pressureassisted lowtemperature sintering of silver paste as an alternative dieattach solution to solderreflow[J]. IEEE Trans. Electron. Packag. Manuf., 2002, 25(4): 279-283.
[10]Bai J G, Zhang Z, Calata J N, et al. Lowtemperature sintered nanoscale silver as a novel semiconductor device metallized substrate interconnect material[J]. IEEE Trans. Compon. Packag. Technol., 2006, 29(3): 589-593.
[11]Bai J G, Lei T G, Calata J N, et al. Control of nanosilver sintering attained through organic binder burnout[J]. J. Mater. Res., 2007, 22(12): 3494-3500.
[12]Lei T G, Calata J N, Lu G Q. Lowtemperature sintering of nanoscale silver paste for attaching largearea (>100 mm2) chips[J]. IEEE Transactions on Components and Packaging Technology, 2010, 33(1): 98-104. [13]Ide E, Angata S, Hirose A, et al. Metalmetal bonding process using Ag metalloorganic nanoparticles[J]. Acta Materialia, 2005, 53(8): 2385-2393.
[14]Morita T, Ide E, Yasuda Y, et al. Study of bonding technology suing silver nanoparticles[J]. Japanese Journal of Applied Physics, 2008, 47(8): 6615-6622.
[15]Akada Y, Tasum H, Hirose A Y, et al. Interfacial bonding mechanism using silver metalloorganic nanoparticles to bulk metals and observation of sintering behavior[J]. Materials Transactions, 2008, 49(7):1537-1545.
[16]Zou Guisheng, Yan Jianfeng, Mu Fengwen, et al. Low temperature bonding of Cu metal through sintering of Ag nanoparticles for high temperature electronic application[J]. The Open Surface Science Journal, 2011, 3:70-75.
[17]Hu A, Guo Y J, Aarifi H, et al. Low temperature sintering of Ag nanoparticles for flexible electronics[J]. Appl. Phys. Lett. 97, 2010: 153117-1—153117-3.
[18]Yan Jianfeng, Zou Guisheng, Wu Aiping, et al. Improvement of bondability by depressing the inhomogeneous distribution of nanoparticles in low temperature bonding process with silver nanoparticles[J]. Journal of Electronic Materials, 2012, 41(7): 1924-1930.
[19]Yan Jianfeng, Zou Guisheng, Wu Aiping, et al. Pressureless bonding process using Ag nanoparticle paste for flexible electronics packaging[J]. Scripta Materialia, 2012, 66: 582-585.
[20]Yan Jianfeng, Zou Guisheng, Wu Aiping, et al. Effect of PVP on the low temperature bonding process using polyol prepared Ag nanoparticle paste for electronic packing application[J]. Journal of Physics: Conference Series 379 (2012) 012024:1-6.
[21]Ogura H, Maruyama M, Matsubashi R, et al. Carboxylatepassivated silver nanoparticles and their application to sintered interconnection: A replacement for high temperature leadrich solders[J]. Journal of Electronic Materials 2010, 39(8): 1233-1240.
[22]Peng P, Hu A, Zhao B, et al. Reinforcement of Ag nanoparticle paste with nanowires for low temperature pressureless bonding[J]. J. Mater Sci, 2012,47:6801–6811.
[23]Peng P, Hu A, Huang H, et al. Roomtemperature pressureless bonding with silver nanowire paste: towards organic electronic and heatsensitive functional devices packaging[J]. J. Mater. Chem., 2012, 22, 12997-13001.
[24]Guo W, Tang S, Zhu Y, et al. A study of sintering bonding using silver nanowires paste[C]. The Proceedings of NMJ 2012, 2-5 Dec., Beijing, China: 63-64.
[25]Lin Luchan, Yan Jianfeng, Liu Lei, et al. High temperature service property evaluation of Agnanoparticle sintered Cu/Cu joints[C]. The Proceedings of NMJ 2012, 2-5 Dec., Beijing, China: 143-144. [26]Hirose A, Tatsumi H, Takeda N, et al. A novel metaltometal bonding process through insitu formation of Ag nanoparticles using Ag2O microparticles[J]. Journal of Physics: Conference Series 2009,165: 012074-1-6.
[27]Ogura T, Nishimura M, Tatsumi H, et al. Evaluation of interfacial bonding utilizing Ag2Oderived silver nanoparticles using TEM observation and molecular dynamics simulation[J]. The Open Surface Science Journal, 2011, 3, 55-59.
[28]Mu Fengwen, Zou Guisheng, Yan Jianfeng, et al. A study on the low temperature sinteringbonding through insitu formation of Ag nanoparticles using Ag2O microparticles[C]. 2011 International Conference on Electronic Packaging Technology & High Density Packaging: 293-301.
[29]Mu Fengwen, Zhao Zhenyu, Zou Guisheng, et al. The effects of Agcoated Cu particles added into microAg2O paste on the sintered joint performance[C]. The Proceedings of NMJ 2012, 2-5 Dec., Beijing, China: 147-148.
[30]Mu Fengwen, Zou Guisheng, Zhao Zhenyu, et al. Bonding of Cu bulks through the low temperature sintering of Ag nanoparticles insitu formed using microAg2O composite paste[C]. The Proceedings of NMJ 2012, 2-5 Dec., Beijing, China: 115-116
[31]Yan J, Zou G, Hu A, et al. Preparation of polymer coated Cu NPs and its applications for lowtemperature bonding[J]. Journal of Materials Chemistry, 2011, 21:15981-15986.
[32]Yasuda Y, Ide E, Morita T. Evaluation of copper oxidebased interconnecting materials[J]. The Open Surface Science Journal, 2011, 3, 123-130.
[33]Morisada Y, Nagaoka T, Fukusumi M, et al. A lowtemperature bonding process using mixed CuAg nanoparticles[J]. Journal of Electronic Materials, 2010, 39[34]Yan Jianfeng, Zou Guisheng, Wu Aiping, et al. Polymerprotected CuAg mixed NPs for lowtemperature bonding application[J]. Journal of Electronic Materials, 2012, 41(7): 1886-1892.
[35]Zhang Yingchuan, Yan Jianfeng, Zou Guisheng, et al. Low temperature sinteringbonding using mixed Cu+Ag nanoparticle paste for packaging application[C]. The Proceedings of NMJ 2012, 2-5 Dec., Beijing, China: 145-146.