转子碰摩波内调制特征提取及其故障诊断应用

来源 :电子测量与仪器学报 | 被引量 : 0次 | 上传用户:greatkinghg
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为深入分析不同转静碰摩故障引起振动响应信号波内调制特征的变化规律,以Jeffcott转子模型为基础,采用基于变分模态分解的Hilbert变换方法对不同碰摩故障仿真信号进行波内调制特征的提取与分析,揭示了碰摩转子的动力学特性与其故障信号波内调制特性间的关联机理.仿真结果表明,周期琅碰摩故障将导致振动响应信号中低频段波内调频模态的瞬时频率以1/k倍频为中心振荡,且振荡频率依然为1/k倍频,进而造成了频谱中的1/k边频带;在概周期碰摩故障中,波内调制频率为靠近1/k倍频的无理数倍频和整数倍频,且造成振动信号频谱中的无理数边频带.离心泵转子故障诊断试验表明,波内调制特征能够有效地对转子碰摩故障进行有效的诊断.
其他文献
智能故障诊断技术能有效保障机械设备安全运行,传统的轴承故障诊断通常假设标记的源域和未标记的目标域数据服从同一分布.然而,在实际的诊断场景中,轴承数据的条件分布和边缘
局部特征尺度分解(local characteristic-scale decomposition,LCD)方法在改善了经验模态分解(empirical mode decomposition,EMD)方法的同时,也继承了EMD的模态混叠问题.噪
针对电引爆装置在复杂电磁辐射环境中会通过电磁耦合产生感应电流,导致电引爆装置失火的问题,提出了一种基于锁相技术的非接触式感应电流检测方法.采用基于隧道磁阻效应的电
提出了一种基于核主成分分析(KPCA)方法和运用了Dropout策略的长短时记忆神经网络(LSTM)的轴承剩余寿命预测方法.首先,提取了振动信号的有效值、最大值、峰峰值、峭度等14个
驱动电机轴承健康状态是实现纯电动车可靠运行,避免发生安全事故的重要前提,针对纯电动车电机滚动轴承状态监测方法缺失的问题,提出一种基于稀疏自编码器(sparse auto-encode
轴承作为旋转机械设备的重要部件之一,利用监测数据对其开展性能退化评估及剩余寿命预测,对于提高设备可靠性、降低维修成本至关重要.针对传统数据驱动方法在特征提取中过度
针对单向阀振动信号易被噪声淹没和故障表征不明显的问题,提出了一种基于总变差降噪(TVD)和递归定量分析(RQA)的单向阀故障诊断方法.首先利用总变差降噪方法对振动信号进行降
针对基于卷积神经网络(CNN)的域自适应技术在提取可迁移特征的训练过程中,存在内部协变量移位的问题,提出一种多层域自适应滚动轴承故障诊断方法.首先,利用CNN提取原始振动数
随着高端装备在工业领域的广泛应用,其运行状态对装备的安全性和产品的性能影响重大,突发故障往往造成巨大的人民生命财产的巨大损失并影响社会的安全稳定.机电系统多处于变
针对实际复杂系统诊断与测试过程中普遍存在的不确定性问题,提出测试不可靠条件下基于人工免疫克隆选择算法(artificial immune clone selection algorithm, AICS)的测试点优化选择方法。通过综合考虑故障检测率、隔离率、虚警率以及测试总费用等性能指标,构造了反映测试点集性能的适应度函数,并设计了基于AICS的不可靠测试点优化方案,有效地降低了算法复杂度,时间开销