利用透射率与场景深度实现带雾图像能见度检测

来源 :计算机科学 | 被引量 : 0次 | 上传用户:ch101732
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
能见度检测是计算机视觉与交通视频图像处理的热点问题。针对传统检测方法存在硬件成本高、适用范围小、检测效率低等不足,给出一种利用透射率和场景深度获取单幅图像能见度的检测方法。首先根据Koschmieder定律和ICAO推荐的对比阈值推导出能见度检测公式,然后根据大气衰减模型得到消光系数,利用暗通道先验理论获取透射率值,结合SFS(从阴影恢复形状)和双目模型获取场景深度值,最后通过求解消光系数反演图像的能见度。实验结果验证了该方法的有效性,精确度和检测效率有较大提高,且不需要相机内部参数,也不需要拍摄同
其他文献
夜间有雾图像会导致图像质量下降,主要体现在夜间有雾图像光照不均、对比度较低且色偏严重,而人工光源的存在更是使得环境光呈现出不均匀性。现有的主流算法主要是针对白天图像进行处理,并不适用于夜间场景去雾处理,导致夜间去雾难度加大。针对上述问题,通过深入分析夜间有雾图像的成像特点,提出了一种新的夜间图像去雾算法。针对夜间有雾图像的色偏问题,提出了改进的暗通道先验算法(MRP)进行颜色校正,该方法单独操作每
期刊
随着大规模时尚数据集的公开,基于深度学习的服装图像分类得到快速发展。然而,目前服装图像分类多数是在同一件服装具有单张的、正面或接近正面的图像的场景下进行分类,这导致了当视角发生变化时常出现服装图像误分类的情况,现实中服装具有的形变大、遮挡严重等特性进一步加剧了该问题。基于上述问题,提出了一种基于流形结构神经网络的服装图像集分类方法,利用流形空间更好地表示服装的内部结构特征。该方法选用多视角度服装图
期刊
近年来,卷积神经网络(CNN)在大规模自然图像数据集(如ImageNet, COCO)中获得了广泛应用,但在声呐图像检测识别领域的应用研究较缺乏,其存在声呐图像目标检测和分类数据集缺乏且水下目标样本往往面临样本稀少、不平衡等问题。针对这一问题,在进行广泛收集声呐图像的基础上,构建了一个完全公开的、可以用于开展声呐图像检测和分类研究的声呐常见目标检测数据集SCTD1.0,该数据集目前已包含水下沉船、
期刊
针对传统投影分割方法在提取单个数码管数字图像时过于依赖图像二值化及图像倾斜校正效果的问题,采用一种基于轮廓提取和轮廓排序相结合的数码管图像分割方法,实验证明该方法相比投影分割法在对数字区域的分割成功率上提高了13.5%;针对传统穿线法对数码管数字1识别度较低和机器学习算法运行用时较长的问题,提出一种基于六段数码管特征的改进穿线法与HOG+SVM方法相结合的数码管数字识别方法,该方法对数码管数字的识
期刊
车辆目标跟踪是实现车联网不可或缺的一环,旨在获取车辆的动态信息,以提高交通运行效率。其核心是对大量监控探头采集的视频图像进行分析处理,实现车辆的实时检测与跟踪。为了进一步提高目标检测效率,降低硬件成本,文中提出了基于二帧差分法的前景检测方法,以及基于质心法的车辆轮廓检测与跟踪方法。基于OpenCV3.4.1和VS2017进行验证实验和仿真测试,结果表明,该算法对车辆跟踪的精确率达到89.1%,平均
期刊
为实现互联网上大量背景复杂、视点变化的视频中人体动作的识别,提出了一种使用无监督的深度信念网络(DBNs)进行人体动作识别的创新方法。该方法采用深度信念网络(DBNs)和受限玻耳兹曼机进行无约束视频的动作识别,利用无监督深度学习模型自动提取合适的特征表示,不需要任何先验知识。在一个具有挑战性的UCF体育数据集上进行实验,证明了该方法准确有效。同时该方法也适用于其他视觉识别任务,并在未来可扩展到非结
期刊
限速标志识别是智能驾驶的重要组成部分,文中分析了现有方法存在的问题,为了提高神经网络在中国限速标志上的泛用性和准确率,针对限速标志的检测部分,提出了一种基于颜色空间的新型筛选方法;针对限速标志的识别部分,在现有LeNet-5架构的基础上对神经网络进行了改进,并将德国交通标志数据集(GTSRB)和清华交通标志数据集(TT100K)中限速标志数据融合,经过数据扩增后制作成新的数据集送入神经网络来训练模
期刊
碰撞现象是视频摘要中需要避免的问题,在轨迹重排时一般通过碰撞代价函数进行约束,但是现有视频摘要方法在轨迹重排优化过程中需要重复计算轨迹间的碰撞代价,存在大量冗余运算量,为此提出了一种基于目标轨迹空间关系的视频摘要方法。该方法通过分析目标轨迹间的空间关系,可以在轨迹重排前预先判断两条轨迹是否会发生碰撞,据此定义了3种轨迹关系,并给出了碰撞代价的快速计算方法,从而较好地降低了现有视频摘要方法优化过程中
期刊
近年来,随着人脸识别系统的不断发展,各种假冒合法用户的欺骗手段不断出现。基于单一差异线索进行的活体检测,已经不能满足当前复杂环境下提高人脸活体检测方法性能的需求。基于此,文中提出多特征融合的方法,使用卷积神经网络从人脸图像的不同线索中学习多个特征来进行活体检测,深度图在空间上能够区分真假人脸之间的深度信息;光流图在时间上能够区分真假人脸之间的动态信息;残差噪声图根据真人脸的一次成像和假冒人脸的二次
期刊
随着深度学习的发展,基于深度卷积神经网络的车道线检测模型在自动驾驶系统和高级辅助驾驶系统中得到了广泛的应用。这些模型虽然有较高的精度,但通常计算量大且运行速度慢。为了解决该问题,提出了一种车道线检测任务专用的轻量神经网络模型。首先,提出了一种行列解耦采样的卷积模块,该模块利用图像中车道线区域的行列可分解性对传统的残差卷积模块进行了合理的优化。其次,利用深度可分离卷积技术进一步降低行列解耦采样卷积模
期刊