论文部分内容阅读
摘 要:设是一个整函数,f为解析函数,由诱导的叠加算子S定义为S(f)=(f)。对算子S的有界性进行了研究,给出了叠加算子S将QK空间映入Bloch空间或者将Bloch空间映入QK空间的一个充分必要条件。
关键词:Bloch空间;QK空间;叠加算子
中图分类号:O174文献标识码:A
[WT]文章编号:1672-1098(2011)02-0038-03
收稿日期:2011-01-10
作者简介:周继振(1976-),男,安徽肥西人,讲师,在读博士,主要从事函数空间和算子理论的研究。
[WT3BZ]Superposition Operators betweenQKand Bloch Space
ZHOU Ji-zhen
(School of Sciences, Anhui University of Science and Technology, Huainan Anhui 232001, China)
Abstract:Letbe an entire function. A superposition operatorSinduced by, defined by S(f)=(f). The author study the boundedness of superposition operator in the paper. A sufficient and necessary condition is given for the superposition operator between QKand the Bloch space.
Key words:Bloch space;QKspaces; superposition operator
根据文献[5]209的引理2, 可构造出一个具有如下性质的域Ω:
1) Ω是单连通的;
2) Ω保存着无限折线L=∪∞n=1[wn-1,wn],其中[wn-1,wn]表示连接wn-1和wn的线段;
3) 若f是一个将D变换到Ω的Riemann映射,则f∈B;
4) 对于任意一个L上的点w,其到Ω边界的距离dist(w,Ω)=δ。
假设f是一个将D变换到Ω的Riemann映射且满足f(0)=0。 因为f是B空间里的一个单叶函数, 运用文献[
注释若K满足条件式(3), 则QK是B的真子集,见文献[1]1 238的定理23。
参考文献:
[1] ESSEN M, WULAN H. On analytic and meromorphic functions and spaces of QKtype[J].Illinois J. Math., 2002, 46:1 233-1 258.
[2] ESSEN M, WULAN H, XIAO J. Several function-theoretic characterizations of Mobius invariant QKspaces[J]. J. Funct. Anal., 2006, 230: 78-115.
[3] XIAO J. Geometric Qpfunctions[M]. Basel-Boston-Berlin, Birkhauser Verlag, 2006:25.
[4] XIAO J. Holomorphic QClasses[M].Berlin, Springer LNM, 2001.
[5] ALVAREZ V, MARQUEZ M, VUKOTIC D. Superposition operation between the Bloch space and Bergman space[J]. Ark. Mat. 2004, 42:205-216.
[6] CAMERA G, GIMENEZ J. The nonliner superoposition operators acting on Bergman space[J].Compos. Math., 1994, 93:23-35.
[7] XIONG C. Superposition operators between Qp and Bloch-type spaces[J]. Complex. Var, 2005, 50: 935-938.
[8] XU W. Superposition operators on Bloch-type space[J]. Comput. Methods Funct. Theory,2007,7:501-507.
[9] GIRLA D, MARQUEZ M.Superposition operators between Qpspaces and Hardy sapces[J]. J. Math. Anal. Appl, 2010, 364:463-472.
[10] WULAN H. Criteria for an analytic function to belong to the QKspaces[J].Acta.Math.Sci.,2009,29:33-44.
[11] POMMERENKE CH. Boundary behaviour of conformal maps[M].Grundlehren Math. Wiss, 299, Berlin, Spring-verlag, 1992:17.
[12] LOU Z.Composition operators on Bloch type spaces[J].Analysis,2003,23:81-95.
(责任编辑:何学华)
关键词:Bloch空间;QK空间;叠加算子
中图分类号:O174文献标识码:A
[WT]文章编号:1672-1098(2011)02-0038-03
收稿日期:2011-01-10
作者简介:周继振(1976-),男,安徽肥西人,讲师,在读博士,主要从事函数空间和算子理论的研究。
[WT3BZ]Superposition Operators betweenQKand Bloch Space
ZHOU Ji-zhen
(School of Sciences, Anhui University of Science and Technology, Huainan Anhui 232001, China)
Abstract:Letbe an entire function. A superposition operatorSinduced by, defined by S(f)=(f). The author study the boundedness of superposition operator in the paper. A sufficient and necessary condition is given for the superposition operator between QKand the Bloch space.
Key words:Bloch space;QKspaces; superposition operator
根据文献[5]209的引理2, 可构造出一个具有如下性质的域Ω:
1) Ω是单连通的;
2) Ω保存着无限折线L=∪∞n=1[wn-1,wn],其中[wn-1,wn]表示连接wn-1和wn的线段;
3) 若f是一个将D变换到Ω的Riemann映射,则f∈B;
4) 对于任意一个L上的点w,其到Ω边界的距离dist(w,Ω)=δ。
假设f是一个将D变换到Ω的Riemann映射且满足f(0)=0。 因为f是B空间里的一个单叶函数, 运用文献[
注释若K满足条件式(3), 则QK是B的真子集,见文献[1]1 238的定理23。
参考文献:
[1] ESSEN M, WULAN H. On analytic and meromorphic functions and spaces of QKtype[J].Illinois J. Math., 2002, 46:1 233-1 258.
[2] ESSEN M, WULAN H, XIAO J. Several function-theoretic characterizations of Mobius invariant QKspaces[J]. J. Funct. Anal., 2006, 230: 78-115.
[3] XIAO J. Geometric Qpfunctions[M]. Basel-Boston-Berlin, Birkhauser Verlag, 2006:25.
[4] XIAO J. Holomorphic QClasses[M].Berlin, Springer LNM, 2001.
[5] ALVAREZ V, MARQUEZ M, VUKOTIC D. Superposition operation between the Bloch space and Bergman space[J]. Ark. Mat. 2004, 42:205-216.
[6] CAMERA G, GIMENEZ J. The nonliner superoposition operators acting on Bergman space[J].Compos. Math., 1994, 93:23-35.
[7] XIONG C. Superposition operators between Qp and Bloch-type spaces[J]. Complex. Var, 2005, 50: 935-938.
[8] XU W. Superposition operators on Bloch-type space[J]. Comput. Methods Funct. Theory,2007,7:501-507.
[9] GIRLA D, MARQUEZ M.Superposition operators between Qpspaces and Hardy sapces[J]. J. Math. Anal. Appl, 2010, 364:463-472.
[10] WULAN H. Criteria for an analytic function to belong to the QKspaces[J].Acta.Math.Sci.,2009,29:33-44.
[11] POMMERENKE CH. Boundary behaviour of conformal maps[M].Grundlehren Math. Wiss, 299, Berlin, Spring-verlag, 1992:17.
[12] LOU Z.Composition operators on Bloch type spaces[J].Analysis,2003,23:81-95.
(责任编辑:何学华)