论文部分内容阅读
Kohonen聚类神经网络(KCN)在处理数据集的聚类问题时具有良好的准确性.但KCN算法在随机选取初始权值时存在不足,而且在处理存在孤立点和“噪声”时算法鲁棒性和可靠性较差.使用数据场的概念对KCN聚类算法进行了有益的改进.实验表明,改进后的算法相对于随机选取初始权值具有较高的准确率。摘要:Kohonen聚类神经网络(KCN)在处理数据集的聚类问题时具有良好的准确性.但KCN算法在随机选取初始权值时存在不足,而且在处理存在孤立点和“噪声”时算法鲁棒性和可靠性较差.使用数据场的概念对KCN聚类算法进行了有