不同来源脂肪酶抑制剂研究进展

来源 :安徽农业科学 | 被引量 : 0次 | 上传用户:xiaochongcheng
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  摘要 脂肪酶抑制剂通过抑制脂肪酶的活性减少油脂的消化吸收,对肥胖症及其并发症有良好的治疗和预防作用。重点阐述了化学合成、微生物发酵和植物提取3种不同来源的脂肪酶抑制剂的研究现状,并对其后期的研究趋势进行探讨。
  关键词 脂肪酶抑制剂;化学合成;微生物发酵;植物提取
  中图分类号 Q814.9;TQ925+.6 文献标识码 A 文章编号 0517-6611(2017)03-0138-03
  Abstract Lipase inhibitors control and reduce the digestion and absorption of fat by inhibiting the activity of lipase, having a good therapeutic effect on obesity as well as its complications. The research status of lipase inhibitor from chemical synthesis, microbial fermentation and plant extraction were elaborated, research trends were discussed.
  Key words Lipase inhibitor;Chemical synthesis;Microbial fermentation;Plant extraction
  肥胖是導致众多慢性疾病的高危因素,与过早死亡风险的增加密切相关[1]。《中国居民营养与慢性病状况报告(2015年)》显示,我国超重与肥胖人口已达3.25亿,而儿童肥胖率高达8.1%,面对如此重大的公共卫生问题,预防和治疗肥胖症状成为当前研究的热点。体内脂肪积聚过多是导致肥胖的重要原因。目前,肥胖的治疗方法主要包括减少食物摄入、促进能量消耗、降低脂肪细胞分化、调节脂肪代谢以及抑制脂肪酶活性等[2]。现代研究表明,脂肪酶抑制剂可有效降低消化道脂肪酶活性,达到减少脂肪吸收、预防和改善肥胖症状的目的[3],因此其研究与应用受到广泛关注。笔者综述了不同来源脂肪酶抑制剂的研究进展。
  1 化学合成来源的脂肪酶抑制剂
  化学合成的有机磷化合物对脂肪酶的抑制作用明显,但这类脂肪酶抑制剂主要用来研究脂肪酶的催化反应机理[4]。近年来,由英国Alizyme公司开发合成并于2013年9月在日本上市的新利司他(Cetilistat)是一种新型强效的脂肪酶抑制剂,具有不作用于神经系统、不被血液吸收的优点[5]。
  2 微生物发酵来源的脂肪酶抑制剂
  微生物种类丰富,代谢产物繁多,是产生脂肪酶抑制剂的重要来源。Umezawa等[6]在1978年从Streptomyces lavendulae MD4-Cl的发酵液中通过抽提、硅胶柱洗脱等步骤获得一种强效胰脂酶抑制剂(Esterastin),其IC50值为0.000 2 μg/mL。Lipstatin(IC50=0.14 μmol/L)是来源于Streptomyces tocytricini的代谢产物[7],其氢化衍生物奥利司他(Orlistat)已被罗氏公司成功开发为減肥药物 Xenical,后者较前者性质更加稳定。Orlistat是目前唯一一类由美国FDA和欧盟批准且可长期(> 3个月)管理控制肥胖患者体重的减肥药物[8],然而其长期服用仍会引起胃肠道反应、肝损害等副作用[9]。随后,罗氏公司从Streptomyces sp.NR 0619 菌株中分离得到其他的胰脂肪酶抑制剂,命名为Panclicin A、B、C、D、E,IC50值分别为2.90、2.60、0.62、0.66、0.89 μmol/L,经结构分析,Panclicin C、D、E为甘氨酸型化合物,而 Panclicin A、B 为丙氨酸型化合物,其脂肪酶抑制活性低于前三者[10]。
  Liu等[11]成功地从云南高等真菌中分离获得全新结构的活性物质韧革菌素,并被证实对脂肪酶有强烈的抑制作用(IC50=0.4 μg/mL),目前已申请国际专利。2007年,KIM等[12]研究表明,一些红曲色素衍生物具有脂肪酶抑制活性。近年来,研究证实植物内生菌代谢产物中存在脂肪酶抑制活性物质[13-14]。
  目前已报道的脂肪酶抑制剂产生菌主要集中于放线菌或真菌,许多学者强调并尝试从不同种属微生物获取脂肪酶抑制剂[15-17],未来将会有更多微生物源脂肪酶抑制剂被发现报道。
  3 植物提取来源的脂肪酶抑制剂
  植物也是脂肪酶抑制剂的重要来源。天然植物资源种类丰富,安全系数高,从中筛选有效的抑制剂得到广泛关注。已报道的植物来源脂肪酶抑制剂主要集中于以下几类化合物。
  3.1 黄酮类化合物
  甘草黄酮是甘草的重要活性成分,从其根部提取得到黄酮类化合物Licochalcone A,对脂肪酶有抑制作用,IC50值为35 μmol/L[18]。Wang等[19]研究发现中药TZQ-F中的荷叶黄酮和山楂叶黄酮对胰脂肪酶有抑制作用,IC50值分别为317.9 和324.0 μmol/L。Tao等[20]分析表明荷叶中的3种黄酮化合物Quercetin-3-O-β-D-arabinopyranosyl-(1D-)-β-D-ga-lactopyranoside、Quercetin-3-O-β-D-glucuronide和Kaempferol-3-O-β-D -glucuronide 可有效抑制脂肪酶的活性,其IC50值分别为 66.86、94.89和135.01 μmol/L。 Wan 等[21]借助固定化脂肪酶从黄芩提取物中分离得到3种黄酮类化合物,IC50值分别为(229.22±12.67)、(153.71±9.21)、(56.07±4.90)μmol/L。   3.2 皂苷類化合物
  Yoshikawa等[22]研究发现山茶花中的齐墩果酸型皂苷Chakasaponins Ⅰ、Ⅱ、Ⅲ均对胰脂肪酶具有抑制活性,IC50值分别为0.15、0.17和0.53 mmol/L。Morikawa 等[23]也发现毛瓣无患子中含有的齐墩果烷型皂苷具有脂肪酶抑制性。Kimura 等[24]分析发现日本七叶树中的七叶树皂苷(Escins)及其衍生物去酰基七叶树皂苷(Desacylescins)和去乙酰七叶树皂苷(Deacetylescins)均具有显著的脂肪酶抑制活性。另外,来源于刺加五、桔梗、茶叶、薯蓣的皂苷也具有脂肪酶抑制活性[25-28]。
  3.3 萜类化合物
  Handa 等[29]从杉树中分离出6种三萜类化合物,均具有较强的脂肪酶抑制活性。Luyen等[30]从杭白菊中分离出的倍半萜化合物10α-hydroxy-1α,4α-endoperoxy-guaia-2-en-12,6α-olide 对脂肪酶有抑制活性,IC50值为161.0 μmol/L。Ninomiya等[31]研究发现鼠尾草中含有5种对脂肪酶有显著抑制作用的化合物,包括4种二萜化合物(Carnosic acid、Carnosol、Royleanonic acid、7-methoxyrosmanol)和1种三萜化合物(Oleanolic acid),IC50值分别为12.0、4.4、35.0、32.0和83.0 μg/mL。此外,在软枣猕猴桃根中分离到的熊果酸等6个三萜类化合物,马薄荷中提取出的单萜化合物香芹酚、巴拉圭冬青叶中分离得到的3个三萜类化合物均具有抑制脂肪酶的效果[32-34]。
  3.4 多酚类化合物
  植物中提取的富含多酚的成分[35]对脂肪酶有很强的抑制作用。 Eom 等[36]测定了褐藻中分离出的6 种多酚类化合物的脂肪酶抑制活性,发现6 种物质均对脂肪酶有显著的抑制作用,其中Fucofuroeckol A和7-phloro-eckol对脂肪酶的抑制率较高,IC50值分别为(37.2±2.3)和(12.7±1.0)μmol/L。Wu等[37]测定了荔枝花中提取的多酚类化合物的脂肪酶活性的抑制效果,发现当多酚提取物浓度为7.0 mg/mL时,对脂肪酶的抑制率为44.69%。You等[38]测定了麝香葡萄及其葡萄籽对胰脂肪酶活性的抑制效果,其IC50值为8.63 mg/mL。另外,构树、苦丁冬青苦丁茶、乌龙茶、水翁花、燕麦中的多酚类物质对脂肪酶活性也有较强的抑制作用[39-43]。
  3.5 生物碱类化合物
  荷叶中的生物碱成分可以降脂[44],范婷婷等[45]研究发现荷叶提取物(1 mg/mL)对脂肪酶的抑制率为11.25%,而荷叶碱、N-降荷叶碱、O-降荷叶碱对脂肪酶的抑制率分别为25.77%、 21.37%、24.63%。Birari等[46]发现咖喱叶中含有对胰脂肪酶有抑制作用的生物碱成分,其中Mahanimbin、Koenimbin和Koenigicine的IC50值分别为17.9、168.6和428.6 μmol/L。Wang等[47]在研究治疗糖尿病药物中发现,添加荷叶生物碱和桑叶生物碱成分对脂肪酶的抑制作用明显。
  3.6 多糖类化合物
  除上述小分子化合物外,多糖类物质对脂肪酶活性也有抑制作用。Huang等[48]测定了决明子水溶性多聚糖提取物对脂肪酶活性的抑制率,发现当多糖提取物的质量浓度为20.00 mg/mL时,Cassia obtusifolia和Cassia tora对脂肪酶的抑制率分别为94.5%和95.3%。Kumar 等[49]利用盐酸和柠檬酸提取苹果渣中的果胶物质,发现脂肪酶抑制率可高达94.30%。
  3.7 其他类化合物
  早在1984 年 Gargouri 等[50]就从大豆种子中分离得到一种分子量大约在7 万的蛋白,经测定可有效抑制胰脂肪酶的活性。Chanmee 等[51]從黄果茄中分离得到具有脂肪酶抑制活性的甾醇类成分,Kumar等[52]研究了苹果渣提取物对脂肪酶的抑制作用。
  4 展望
  随着肥胖人群的激增,开发安全有效的减肥药迫在眉睫,其中通过抑制脂肪酶的活性来达到减肥目的成为研究热点,吸引了众多研究者的关注。脂肪酶抑制剂的来源主要包括化学合成、微生物发酵与植物提取。化学合成类脂肪酶抑制剂由于往往存在副作用,因此研究者对天然来源的,即微生物发酵与植物提取的脂肪酶抑制剂研究较多,并且发现很多对脂肪酶有显著抑制作用的成分。然而,植物中的活性成分含量较低,难以大量提取,这是制约植物提取来源脂肪酶抑制剂工业化发展的关键因素。 微生物发酵源脂肪酶抑制剂具有周期短、产量大的优点,这为研究微生物源脂肪酶抑制剂奠定了良好的物质基础。同时,植物与微生物源脂肪酶抑制剂的构效关系与其作用机制尚不完全明晰,可作为今后研究的方向。
  参考文献
  [1] ANGELANTONIO E D,BHUPATHIRAJU S N,WORMSER D,et al.Bodymass index and allcause mortality:Individualparticipantdata metaanalysis of 239 prospective studies in four continents[J].Lancet,2016,388(10046):776-786.
  [2] YUN J W.Possible antiobesity therapeutics from nature:A review[J].Phytochemistry,2010,71(14/15):1625-1641.
  [3] MERA Y,KAWAI T,OGAWA N,et al.JTT130,a novel intestinespecific inhibitor of microsomal triglyceride transfer protein,ameliorates lipid metabolism and attenuates atherosclerosis in hyperlipidemic animal models[J].Journal of pharmacological sciences,2015,129(3):169-176.   [4] GARGOURI Y,RANSAC S,VERGER R.Covalent inhibition of digestive lipases:An in vitro study[J].Biochimica et biophysica acta,1997,1344(1):6-37.
  [5] GRAS J.Cetilistat for the treatment of obesity[J].Drugs of today,2013,49(12):755-759.
  [6] UMEZAWA H,AOYAGI T,HAZATO T,et al.Esterastin,an inhibitor of esterase,produced by actinomycetes[J].Journal of antibiotics,1978,31(6):639-641.
  [7] WEIBEL E K,HADVARY P,HOCHULI E,et al.Lipstatin,an inhibitor of pancreatic lipase,produced by Streptomyces toxytricini[J].African journal of biotechnology,2008,5(5):1437-1455.
  [8] HASLAM D.Weight management in obesitypast and present[J].International journal of clinical practice,2016,70(3):206-217.
  [9] DREW B S,DIXON A F,DIXON J B.Obesity management:Update on orlistat[J].Vascular health & risk management,2007,3(6):817-821.
  [10] MUTOH M,NAKADA N,MATSUKUMA S,et al.Panclicins,novel pancreatic lipase inhibitors.I.Taxonomy,fermentation,isolation and biological activity[J].Journal of antibiotics,1995,47(12):1369-1375.
  [11] LIU D Z,WANG F,LIAO T G,et al.Vibralactone:A lipase inhibitor with an unusual fused βlactone produced by cultures of the basidiomycete Boreostereum vibrans[J].Organic letters,2006,8(25):5749-5752.
  [12] KIM J H,KIM H J,KIM C,et al.Development of lipase inhibitors from various derivatives of monascus pigment produced by Monascus fermentation[J].Food chemistry,2007,101(1):357-364.
  [13] GUPTA M,SAXENA S,GOYAL D.Lipase inhibitory activity of endophytic fungal species of Aegle marmelos:Abioresource for potential pancreatic lipase inhibitors[J].Symbiosis,2014,64(3):149-157.
  [14] GUPTA M,SAXENA S,GOYAL D.Potential pancreatic lipase inhibitory activity of an endophytic Penicillium species[J].Journal of enzyme inhibition & medicinal chemistry,2015,30(1):15-21.
  [15] 劉蘭,周培华,曾伟,等.脂肪酶抑制剂产生菌的筛选和鉴定[J].食品与生物技术学报,2013,32(2):219-223.
  [16] 孙菲,郑榕,杨煌建,等.胰脂肪酶抑制剂产生菌的筛选[J].生物技术进展,2014(1):40-43.
  [17] 朱珺,吴石金.胰脂肪酶抑制剂产生菌的筛选和鉴定[J].发酵科技通讯,2015,44(4):10-14.
  [18] WON S R,KIM S K,KIM Y M,et al.Licochalcone A:A lipase inhibitor from the roots of Glycyrrhiza uralensis[J].Food research international,2007,40(8):1046-1050.
  [19] WANG T,ZHANG D Q,LI Y H,et al.Regulation effects on abnormal glucose and lipid metabolism of TZQF,a new kind of traditional Chinese medicine[J].Journal of ethnopharmacology,2010,128(3):575-582.
  [20] TAO Y,ZHANG Y F,WANG Y,et al.Hollow fiber based affinity selection combined with high performance liquid chromatographymass spectroscopy for rapid screening lipase inhibitors from lotus leaf[J].Analytica chimica acta,2013,785:75-81.   [21] WAN L H,JIANG X L,LIU Y M,et al.Screening of lipase inhibitors from Scutellaria baicalensis extract using lipase immobilized on magnetic nanoparticles and study on the inhibitory mechanism[J].Analytical & bioanalytical chemistry,2016,408(9):2275-2283.
  [22] YOSHIKAWA M,SUGIMOTO S,KATO Y,et al.Acylated oleananetype triterpene saponins with acceleration of gastrointestinal transit and inhibitory effect on pancreatic lipase from flower buds of chinese tea plant(Camellia sinensis)[J].Chemistry & biodiversity,2009,6(6):903-915.
  [23] MORIKAWA T,XIE Y Y,ASAO Y,et al.Oleananetype triterpene oligoglycosides with pancreatic lipase inhibitory activity from the pericarps of Sapindus rarak[J].Phytochemistry,2009,70(9):1166-1172.
  [24] KIMURA H,OGAWA S,KATSUBE T,et al.Antiobese effects of novel saponins from edible seeds of Japanese horse chestnut(Aesculus turbinata BLUME)after treatment with wood ashes[J].Journal of agricultural & food chemistry,2008,56(12):4783-4788.
  [25] LI F,LI W,FU H W,et al.Pancreatic lipaseinhibiting triterpenoid saponins from fruits of Acanthopanax senticosus[J].Chemical & pharmaceutical bulletin,2007,55(7):1087-1089.
  [26] HAN L K,KIMURA Y,KAWASHIMA M T,et al.Antiobesity effects in rodents of dietary teasaponin,a lipase inhibitor[J].International journal of obesity,2001,25(10):1459-1464.
  [27] HAN L K,ZHENG Y N,XU B J,et al.Saponins from platycodi radix ameliorate high fat dietinduced obesity in mice[J].Journal of nutrition,2002,132(8):2241-2245.
  [28] KWON C S,SOHN H Y,KIM S H,et al.Antiobesity effect of Dioscorea nipponica Makino with lipaseinhibitory activity in rodents[J].Bioscience biotechnology & biochemistry,2003,67(7):1451-1456.
  [29] HANDA M,MURATA T,KOBAYASHI K,et al.Lipase inhibitory and LDL antioxidative triterpenes from Abies sibirica[J].Phytochemistry,2013,86(2):168-175.
  [30] LUYEN N T,TRAM L H,HANH T T H,et al.Inhibitors of αglucosidase,αamylase and lipase from Chrysanthemum morifolium[J].Phytochemistry letters,2013,6(3):322-325.
  [31] NINOMIYA K,MATSUDA H,SHIMODA H,et al.Carnosic acid,a new class of lipid absorption inhibitor from sage[J].Bioorganic & medicinal chemistry letters,2004,14(8):1943-1946.
  [32] JANG D S,LEE G Y,KIM J,et al.A new pancreatic lipase inhibitor isolated from the roots of Actinidia arguta[J].Archives of pharmacal research,2008,31(5):666-670.
  [33] YAMADA K,MURATA T,KOBAYASHI K,et al.A lipase inhibitor monoterpene and monoterpene glycosides from Monarda punctata[J].Phytochemistry,2010,71(16):1884-1891.   [34] SUGIMOTO S,NAKAMURA S,YAMAMOTO S,et al.Brazilian natural medicines.III.Structures of triterpene oligoglycosides and lipase inhibitors from mate,leaves of ilex paraguariensis[J].Chemical & pharmaceutical bulletin,2009,57(3):257-261.
  [35] BUCHHOLZ T,MELZIG M F.Polyphenolic compounds as pancreatic lipase inhibitors[J].Planta medica,2015,81(10):771-783.
  [36] EOM S H,LEE M S,LEE E W,et al.Pancreatic lipase inhibitory activity of phlorotannins isolated from Eisenia bicyclis[J].Phytotherapy research,2013,27(1):148-151.
  [37] WU Y H S,CHIU C H,YANG D J,et al.Inhibitory effects of litchi(Litchi chinensis Sonn.)flowerwater extracts on lipase activity and dietinduced obesity[J].Journal of functional foods,2013,5(2):923-929.
  [38] YOU Q,CHEN F,WANG X,et al.Antidiabetic activities of phenolic compounds in muscadine against alphaglucosidase and pancreatic lipase[J].LWTFood Science and Technology,2012,46(1):164-168.
  [39] AHN J H,LIU Q,LEE C,et al.Cheminform abstract:A new pancreatic lipase inhibitor from Broussonetia kanzinoki[J].Cheminform,2012,43(35):2760-2763.
  [40] 張丽娜.水翁花对胰脂肪酶和α-淀粉酶抑制活性及作用机制初步探讨[D].上海:华东理工大学,2012.
  [41] 张文芹.苦丁冬青苦苦丁茶多酚类物质抗肥胖作用的研究[D].南京:南京农业大学,2011.
  [42] CAI S B,WANG O,WANG M Q,et al.In vitro inhibitory effect on pancreatic lipase activity of subfractions from ethanol extracts of fermented Oats(Avena sativa L.)and synergistic effect of three phenolic acids[J].Journal of agricultural & food chemistry,2012,60(29):7245-7251.
  [43] ZHU Y T,REN X Y,YUAN L,et al.Fast identification of lipase inhibitors in oolong tea by using lipase functionalised Fe3O4 magnetic nanoparticles coupled with UPLCMS/MS[J].Food chemistry,2015,173:521-526.
  [44] CHEN X P,YANG P,ZHANG Y D.Studies on separation and purification of alkaloid from lotus leaves and inhibition effects of extracts on lipase activity[J].Research of agricultural modernization,2009,30(6):748-751,760.
  [45] 范婷婷,法魯克,方芳,等.荷叶总生物碱降脂减肥作用的体内外试验[J].浙江大学学报(农业与生命科学版),2013,39(2):141-148.
  [46] BIRARI R,ROY S K,SINGH A,et al.Pancreatic lipase inhibitory alkaloids of Murraya koenigii leaves[J].Natural product communications,2009,4(8):1089-1092.
  [47] WANG T,ZHANG D Q,LI Y H,et al.Regulation effects on abnormal glucose and lipid metabolism of TZQF,a new kind of Traditional Chinese Medicine[J].J Ethnopharmacol,2010,128(3):575-582.
  [48] HUANG Y L,CHOW C J,TSAI Y H.Composition,characteristics,and invitro physiological effects of the watersoluble polysaccharides from Cassia seed[J].Food chemistry,2012,134(4):1967-1972.
  [49] KUMAR A,CHAUHAN G S.Extraction and characterization of pectin from apple pomace and its evaluation as lipase (steapsin)inhibitor[J].Carbohydrate polymers,2010,82(2):454-459.
  [50] GARGOURI Y,JULIEN R,PIERONI G,et al.Studies on the inhibition of pancreatic and microbial lipases by soybean proteins[J].Journal of lipid research,1984,25(11):1214-1221.
  [51] CHANMEE W,CHAICHAROENPONG C,PETSOM A.Lipase inhibitor from fruits of Solanum stramonifolium Jacq.[J].Food & nutrition sciences,2013,4(5):554-558.
  [52] KUMAR A,CHAUHAN G S.Extraction and characterization of pectin from apple pomace and its evaluation as lipase(steapsin)inhibitor[J].Carbohydrate polymers,2010,82(2):454-459.
其他文献
摘要 综述了叶面肥的研究历史和应用现状,对叶面肥的种类、特点和施用技术进行总结。结合我国的实际情况指出了叶面肥在实际应用中存在的问题,并对叶面肥在未来的发展趋势进行了预测。  关键词 叶面施肥;叶面肥;应用  中图分类号 S14;TQ447.4 文献标识码 A 文章编号 0517-6611(2017)03-0127-04  Abstract Research history and applica
期刊
摘要[目的]改良环渤海低平原区盐碱地和提高小麦产量。 [方法]通过大田小区试验,研究在中度盐碱地上施用不同用量含腐殖酸小麦专用功能肥对小麦生长的影响。[结果]小麦产量和生物量均随功能肥施用量增加呈下降趋势,在小麦功能肥G2(300 kg/hm2)时最高,达3 480和7 651 kg/hm2,较其他处理高63.2%~143.9%和28.4%~96.9%,且差异显著,小麦的收获指数也在G2处理时最高
期刊
摘要 通过解析观果植物在城市园林中的潜在价值及特殊功能,在调查的基础上,对张家界市观果植物的应用现状进行分析和总结,指出存在的问题。同时统计了张家界市常应用的观果植物,并且提出如何选择观果植物种类以进行更新,主张利用野生观果植物资源,并总结适合张家界地区的观果植物。  关键词 观果植物;应用现状;张家界市  中图分类号 S688 文献标识码 A 文章编号 0517-6611(2017)03-020
期刊
摘要[目的]研究R318的抗褐飞虱特性与育种利用。[方法]以TN1、RHT、B5为对照,对R318及其衍生品系进行褐飞虱田间抗虫鉴定,用抗性基因Bph15引物MS5对R318及其衍生品系进行分子检测。[结果]田间鉴定R318对褐飞虱表现为抗,其衍生品系表现为中抗-感虫;分子检测R318及其衍生品系与B5具有一致的带型。[结论]R318含有的抗性基因可能是Bph15。  关键词 R318;褐飞虱;抗
期刊
摘要 利用位于南京北郊的南京信息工程大学观测基地2010年各层(0、5、10、15、20、40、80、160、320 cm)地温数据,采用统计分析方法对南京北郊地温的变化特征进行了分析,揭示南京市浦口地区地温与时间、深度的变化关系。结果表明,南京北郊地区表层地温以及浅层地温有明显的季节变化和日变化,呈近似于正弦曲线的变化趋势。从地表到20 cm深时,地温的日变化逐渐减弱;当深度在40~320 cm
期刊
摘要[目的]明确寒地水稻纹枯病抗性鉴定的调查指标及鉴定时期。[方法]利用苗期鉴定法和成株期牙簽嵌入法分别于分蘖末期和抽穗期进行接种,并在苗期采用单株病情指数,成株期采用病级、相对病斑长度、病斑长度和绝对病斑高度为调查指标,进行抗性鉴定。[结果]分蘖末期接种的3次调查中,病级、绝对病斑高度与抽穗期第3次调查的绝对病斑长度和病级的灰色关联度呈上升趋势,且分蘖末期接种的第3次调查中这2个指标与对照指标的
期刊
摘要 [目的]检测桃红肉性状分子标记在自然群体上应用的有效性。[方法]以109份桃种质为试材,检测位于LG4上的2个SNPs标记SNP_IGA_386619和SNP_IGA_387198以及LG5和LG3上的SSR分子标记WPS23和UDP96-008的分型与种质果肉红色素的相关性。[结果]秩和检验表明,标记SNP_IGA_386619的3种分型与种质红色素多少的相关性达到显著水平(P=0.007
期刊
摘要 以广西第二次石漠化监测结果为基础,介绍了广西岩溶地区土地石漠化现状,综述了广西岩溶地区石漠化状况及程度的动态变化,并分析了变化原因,最后提出了进一步加快石漠化防治的林业对策。  关键词 广西;石漠化;动态变化;防治措施  中图分類号 S727.2 文献标识码 A 文章编号 0517-6611(2017)03-0187-03  Abstract Based on the monitoring
期刊
摘要 聚焦于现今火热的民宿发展潮流,针对我国民宿现有的弊病,在四川省大力发展乡村旅游和新农村建设之际,主张从更加健康和长久的角度入手,培育西蜀民宿新品牌。希望新模式能帮助四川地区民宿更好地发展,从乡土的角度入手建设更加规范和特色的乡土民宿。  关键词 乡土民宿;發展;策略;新模式  中图分类号 F590.75 文献标识码 A 文章编号 0517-6611(2017)03-0207-04  Abst
期刊
摘要 基于供给侧改革视角,从扶贫资金供给端着眼,对精准扶贫资金投入问题进行分析,提出构建基于供给侧改革的精准扶贫资金多方投入機制:以财政资金为基础的政府供给端,以政策性贷款为重点的资金供给端,以引入社会资本为动力的市场供给端,以农户自筹为补充的活力供给端。  关键词 供给侧改革;精准扶贫;资金投入  中图分类号 S-9 文献标识码 A 文章编号 0517-6611(2017)03-0239-03 
期刊