论文部分内容阅读
The structural and the size evolution of embedded In nanoparticles in Al synthesized by ion implantation and subsequent annealing are experimentally investigated. The average radius r of In nanoparticles is determined as a function of annealing time in a temperature range between 423 K and 453 K. The structural transition of In nanoparticles with the crystallographic orientation In(200)[002] Al(200)[002] is observed to change into In(111)[110] Al(002)[110] with a critical particle radius between 2.3 nm and 2.6 nm. In addition, the growth of In nanoparticles in the annealing process is evidently governed by the diffusion limited Ostwald ripening. By further analyzing the experimental data, values of diffusion coefficient and activation energy are obtained.
The structural and the size evolution of embedded In nanoparticles in Al synthesized by ion implantation and subsequent annealing are experimentally investigated. The average radius r of In nanoparticles is determined as a function of annealing time in a temperature range between 423 K and 453 K. The structural transition of In nanoparticles with the crystallographic orientation In (200) Al (200) is observed to change into In (111) [110] Al (002) [110] with a critical particle radius between 2.3 nm and 2.6 nm. In addition, the growth of In nanoparticles in the annealing process is evidently governed by the diffusion limited Ostwald ripening. Further data of the diffusion coefficient and activation energy are obtained.