论文部分内容阅读
在神经网络的监督学习中,需要大量人工标识特征的训练样本集。学习系统的成功依赖于样本标识特征的准确性,但人工标识特征费时费力,人为因素决定的特征通用性较差。稀疏自编码器是一种无监督学习方法,可以通过对无标记样本的学习,自动提取样本特征。对稀疏自编码器进行仿真,证明它可以很好地提取输入的无标记样本的特征,这将极大地提高机器学习系统的应用范围和准确性。