论文部分内容阅读
针对有监督的深度神经网络文本生成模型容易造成错误累积的问题,提出一种基于强化对抗思想训练的文本生成模型。通过将生成对抗网络鉴别器作为强化学习的奖励函数及时指导生成模型优化,尽量避免错误累积;通过在生成过程中加入目标指导特征帮助生成模型获取更多文本结构知识,提升文本生成模型真实性。在合成数据和真实数据集上的实验结果表明,该方法在文本生成任务中,较之前的文本生成模型在准确率和真实性上有了进一步的提高,验证了加入目标指导的强化对抗文本生成方法的有效性。