基于分布式计算框架的风暴三维追踪方法

来源 :计算机应用 | 被引量 : 0次 | 上传用户:q183727555
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
气象数据的增长规模已达到每小时TB级,这使得传统基于关系型数据库和文件存储系统在海量数据存储与管理方面捉襟见肘,进而使得基于大规模异构气象数据的应用无法规模化,同时,也无法满足科研人员对海量气象数据高效探索的需要。为解决这一系列问题,研究者分别基于MapReduce、HBase等分布式框架下的分布式计算和存储技术,尝试为海量气象数据的探索提供有效技术手段,然而,综合性的研究据了解还未开展。因此,利用近年来积累的海量多普勒天气雷达数据,开展了基于MapReduce和HBase相结合的风暴三维追踪方法的
其他文献
针对内存计算框架Spark在作业Shuffle阶段一次分区产生的数据倾斜问题,提出一种内存计算框架的迭代填充分区映射算法(IFPM)。首先,分析Spark作业的执行机制,建立作业效率模型和分区映射模型,给出作业执行时间和分配倾斜度的定义,证明这些定义与作业执行效率的因果逻辑关系;然后,根据模型和定义求解,设计扩展式数据分区算法(EPA)和迭代式分区映射算法(IMA),在Map端建立一对多分区函数,
针对无线传感器网络动态分簇目标跟踪中的数据碰撞与簇首选择过程导致能耗过高问题,提出一种基于能量优化的无线传感器网络动态分簇方法。首先,构建时分竞选传输模型,主动避
为了在不增加较多计算量的前提下,提高卷积网络模型用于图像分类的正确率,提出了一种基于复杂网络模型描述的图像深度卷积分类方法。首先,对图像进行复杂网络描述,得到不同阈值下的复杂网络模型度矩阵;然后,在图像度矩阵描述的基础上,通过深度卷积网络得到特征向量;最后,根据得到的特征向量进行K近邻(KNN)分类。在ILSVRC2014数据库上进行了验证实验,实验结果表明,所提出的模型具有较高的正确率和较少的迭
目的分析探讨人性化护理在门诊输液中的应用以及效果。方法此次研究开展于2016年7月~2 0 1 7年4月,在此期间将我院门诊输液室的2 4 0例患者作为研究对象,按照随机性原则分为
为了解决知识图谱的链接预测问题,提出了一种共享变量的神经网络模型(LCPE),该模型通过将实体和关系嵌入到向量空间中实现对链接的预测。通过分析Unstructured Model,推导出在向量空间中两个有关系的实体嵌入距离更近,即相似的实体之间更可能具有关系,LCPE模型将ProjE模型和实体之间的相似度信息进行融合,在判断两个实体是否有关系的基础上判断具体关系类型。三元组预测实验中,LCPE模型
目的探讨优质护理在小儿麻疹合并肺炎心衰中的应用效果。方法选择我院收治的120例小儿麻疹合并肺炎心衰患儿,随机分为对照组与观察组,前组应用常规护理,后组应用优质护理,比
目的研究对变应性鼻炎患者提供中医护理干预措施对患者生活质量的影响。方法选取2015年2月~2016年4月我院接收的变应性鼻炎患者72例作为研究对象,按照便利抽样法将其划分为常