论文部分内容阅读
对单向耦合下两个不同的Lorenz系统的广义同步进行了研究,利用辅助系统方法,基于稳定性理论和响应系统的有界性,得到了它们达到广义同步时的充分条件,并根据响应系统的修正系统具有零渐近稳定平衡点、非零渐近稳定平衡点和轨道渐近稳定周期解的情况,将广义同步分为第一类、第二类和第三类;利用Routh-Hurwitz定理,对修正系统平衡点的稳定性进行了分析,给出了单向耦合下两个不同Lorenz系统具有第一类、第二类广义同步的充分条件.数值仿真表明了该方法的有效性与可行性.