论文部分内容阅读
现有的关联规则更新算法大多致力于解决增量更新本身,但很少同时考虑更新时机,不适于对实时应用中频繁更新的数据进行有效处理。针对此问题,提出了一种与时机判定相结合的关联规则增量更新算法,在改进增量更新方法的同时,兼顾对更新时机的判定。在关联规则增量更新阶段,计算含有非空子集个数之和最多的频繁项集,找出在更新数据集中仍然频繁的项集,根据Apriori性质,避免对其子集的处理,从而实现对候选项集的有效剪枝。实验结果表明,该算法通过对更新时机的及时判定和候选项集的有效剪枝,提高了关联规则的更新效率。