论文部分内容阅读
手语识别的研究具有重大的学术价值和广泛的应用前景。在近些年的手语识别工作中,隐马尔科夫模型(HiddenMarkov Models,简称HMMs)起到了重要的作用。基于HMM的统计框架是当前动态识别领域的主流方法,同时也是该文的研究工作的理论基础。提出将半连续隐马尔科夫模型(SCHMM)用于手语识别,在理论上证明了SCHMM优于离散隐马尔科夫模型(DHMM)和连续隐马尔科夫模型(CHMM),可以避开DHMM中因矢量量化造成的信息损失,在保证识别率的前提下降低模型的复杂性和运算量。