基于脉冲推力的半被动双足机器人无模型神经网络控制

来源 :计算机应用研究 | 被引量 : 8次 | 上传用户:songyinming
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
研究了半被动双足机器人的平面稳定行走控制问题。以最简行走模型为动力学模型,采用沿支撑腿方向的脚后跟脉冲推力作为行走动力源。考虑到系统模型的非线性特征,将基于三角函数扩展的函数链接型人工神经网络控制算法引入到机器人系统中,以产生系统所需的脉冲推力。采用基于数据驱动的无模型同步扰动随机逼近算法对神经网络的权值进行更新,利用庞加莱映射方法分析了半被动双足机器人行走的稳定条件。在理论分析的基础上,对该算法进行了仿真研究。仿真结果表明,算法在收敛快速性上要优于迭代学习控制算法,可以实现双足机器人平面上的稳定周
其他文献
DBSCAN聚类算法使用固定的Eps和min Pts,处理多密度的数据效果不理想,并且算法的时间复杂度为O(N2)。针对以上问题,提出一种基于区域划分的DBSCAN多密度聚类算法。算法利用网格相对密度差把数据空间划分成密度不同的区域,每个区域的Eps根据该区域的密度计算自动获得,并利用DBSCAN算法进行聚类,提升了DBSCAN的精度;避免了DBSCAN在查找密度相连时需要遍历所有数据的不足,从而
为了解决实时系统中粒子滤波的计算复杂性问题,提出了一种零bank冲突并行规约的差分进化粒子滤波方法。该方法首先分析了并行差分进化粒子滤波算法在GPU中的内存访问模式,根据粒子滤波器的均方根误差与内存访问bank(存储体)冲突度成正比的关系,提出了一种去除bank冲突的有填充寻址的差分进化粒子滤波算法,降低了计算复杂度。将该算法在NVIDIA GTX960 GPU中实现,与串行差分进化粒子滤波算法进
针对多最小效用阈值高效用项集挖掘算法(MHUI)中出现的重复计算、挖掘的结果项集不是频繁的问题,提出两个新的快速挖掘算法FMHUI和SFMHUI。FMHUI算法在计算项集的最小效用阈值时利用前一次计算结果,避免了项之间的重复比较;另外定义了项的扩展项的最小效用阈值表EMMU-table快速计算出扩展项的最小效用阈值,提高了运行效率。SFMHUI算法在FMHUI的基础上增加了支持度约束,使挖掘的项集