等离子喷涂Ni/YSZ的结构调控及其电化学性能

来源 :电源技术 | 被引量 : 0次 | 上传用户:qqshe
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
采用不同粒径的NiO/YSZ团聚粉末分别用Ar/H2与Ar/N2等离子喷涂制备了固体氧化物燃料电池Ni/YSZ阳极,系统研究了粉末粒子的熔化状态对阳极微观结构与电化学性能的影响.结果表明粒子尺寸与等离子气体显著影响其熔化状态,XRD结果表明使用Ar/H2等离子体可促进NiO在喷涂过程中还原形成Ni/NiO/YSZ三元粒子阳极.SEM结果表明喷涂态阳极主要由均匀分布的NiO和YSZ构成.电化学性能测试结果表明,阳极的催化活性受粒子熔化程度影响显著,采用Ar/H2等离子喷涂30~50 mm粉末获得熔化程度适中的粒子制备的阳极极化阻抗在800与600℃时分别为0.22及0.59Ω·cm2,由该阳极组装的电解质支撑的单电池获得了最高的输出功率密度,在800℃时达到334 mW/cm2.
其他文献
为解决电动汽车(EVs)动力电池批量退役时检测与分选效率低下的问题,提出一种基于容量增量分析(ICA)的退役磷酸铁锂(LiFePO4)电池分选方法.分析电池容量增量(IC)曲线特征与内部老化过程的关系,提出一致性特征量提取方法;结合模糊C均值聚类(FCM)方法,确定电池一致性分选方法.实验结果表明,IC特征一致性分选方法与传统容量-内阻分选方法相比,提高了退役电池分选的一致性和分选效率.此分选方法对电动汽车退役电池科学高效梯次利用有重要意义.
由于电池的不一致性,电动汽车、叉车以及其他大功率动力电池组的电池管理系统(battery management system,BMS)至关重要,精确的荷电状态(state of charge,SOC)估计和高效的均衡策略是BMS的技术核心.基于同步双向反激式变压器的均衡电路拓扑,提出一种以电池SOC、电压为均衡变量的分段式主动均衡混合策略.通过搭建BMS电池组实验平台,开展了充放电阶段的均衡实验,结果显示充电阶段均衡后电池组总容量提升了2.3%,单电池电压极差由74 mV减小至9 mV;放电阶段均衡后单体
电化学阻抗谱作为一种现代测试手段,对测试和提高锂离子电池的性能提供了便利.由于电化学阻抗谱无法直观地反映电池内部的结构以及电化学过程,且常用的等效电路模型方法在分析电化学阻抗谱上存在一定的局限性,因此引入了弛豫时间分布函数方法用于分离和量化电池内部的电化学过程.构建了一套完整的用弛豫时间分布函数方法分析锂离子电池的电化学阻抗谱的流程,并成功应用于磷酸铁锂原型电池的电化学阻抗谱分析中.
热管理对于保证电池模组的使用性能(包括安全性和寿命)具有重要意义.针对储能用方形锂离子电池模块,通过热流体模型仿真,研究了主动式风冷和液冷热管理系统性能.模块原串行式风冷方案被优化改进为串(并)行混合式风冷方案,提高了电池组温度场一致性,但对于降低最高温度作用有限,并发现液冷系统热管控性能明显优于风冷.还比较研究了风冷和液冷方案的能耗情况以及循环充放电过程中变流量工况对能耗的影响,发现空冷系统能耗约为液冷系统的6.2倍;变流量策略可以满足有效热管理的要求,而且降低了风冷系统24.3%的能耗和液冷系统19.
随着自主式水下无人潜航器(AUV)在海洋探索中的广泛应用,对AUV电池组的安全可靠和节能高效提出了更高的目标和要求.分析了AUV系统的负载构成,利用BP人工神经网络构建了AUV电机功率需求模型,设计了一种基于功率跟随的具有根据电压动态调节功能的能量分配策略,能够有效平缓电池组的输出、提高电池组的放电安全性、延长电池组的使用寿命、提高电池组的能量利用率,同时节约了4.2%~7.4%的能量.
探究了利用硬模板法,通过SiO2纳米球模板及钛酸四丁酯的水解包覆最终刻蚀获得具有规则形貌的锐钛矿型TiO2空心纳米球,并以所得TiO2空心纳米球作为正极材料、纯镁为负极,分别以0.4 mol/L PhMgCl-AlCl3/THF(APC)+1.0 mol/L LiCl为混合双盐电解液组装镁锂混合离子电池以及以0.4 mol/L APC电解液组装镁离子电池进行电化学测试对比.实验结果表明,所制得的锐钛矿型TiO2空心纳米球在镁锂混合离子电池中作正极时,60 mA/g电流密度下首次放电比容量72.9 mAh/
针对实际工况下电动汽车电池充放电电流不稳定,难以获取满充满放数据带来的电池健康状态估计困难的问题,研究以容量作为健康状态评价指标,以安时积分逆过程计算的深度充电片段电池容量及实车运行特征数据为数据样本,建立特征数据和容量之间的机器学习模型,得到剩余充电片段容量的估计,提出了一种结合安时积分法和机器学习模型对全时间段电池健康状态进行估计的方法.模型评价结果表明,该方法合理有效,对实际工况下电动汽车电池健康状态的实时估计有重要意义.
针对电动汽车电化学储能技术方案选择时难以系统量化问题,提出基于改进的层次分析法、CRITIC法及逼近理想解排序法的电化学储能技术综合评价方法,选取技术性、经济性两方面8个评价指标,构建综合评价指标体系.采用改进层次分析法确定主观权重,CRITIC法确定客观权重,使用基于博弈论的组合赋权法确定组合权重,通过逼近理想解排序法,求得各电化学储能技术方案与理想解的逼近度.结果表明磷酸铁锂电池方案最优,可为电动汽车电化学储能技术方案选择提供决策支持.
固体氧化物燃料电池(SOFC)是一种能量转换装置,使用碳氢燃料,具有很大的发展潜力.为了探究H2-CO燃料气与电极温度、进出口组分、电流密度、功率密度和超电势之间的关系,以期对SOFC的设计和运行提供帮助,建立了三维模型,并通过实验验证了模型的有效性.随燃料流量的增加,电极温度、功率密度、阴极浓差超电势先增大后减小,进出口组分改变量、燃料利用率、阳极浓差超电势减小,电流密度、活化超电势和欧姆超电势增加.H2占比越大,电池性能越好.
为确定不同燃料对电池性能的影响以及为电池燃料的选择提供理论依据,基于有限元模拟软件COMSOL Multiphysics,分别建立了以甲烷混合气和氢气为燃料的SOFC三维多物理场全耦合数值模型.研究结果表明:在0.30~1.05 V的工作电压范围内,燃料电池的功率密度都随着平均电流密度的变大,呈现出先增大,达到峰值后减小的趋势,氢气燃料电池的功率密度峰值要大于甲烷的;氢气燃料电池从入口处到出口处的温度上升了37 K,甲烷燃料电池上升了7 K,氢气燃料电池阳极出口处的温度要大于阴极,而甲烷燃料电池则正好相反