论文部分内容阅读
为了解决现有的基于人体形变模型的姿态估计算法容易出现误差、组成的运动序列不连贯等问题,提出利用深度相机获取的视频数据、点云数据进行优化的方法。对于视频数据:首先使用神经网络从视频每一帧彩色图像中提取模型参数,再利用人体关键点和轮廓的约束对参数进行优化求解,最后结合视频序列的帧间连贯性对视频全部帧的姿态估计结果进行误差纠正,使所得的运动序列更加流畅平滑。此外,为了进一步提升算法的精度,利用深度图所得点云与对应彩色图所得模型作为联合输入,然后利用点云与模型对应点的距离约束进行优化求解,最终得到一个与人体