论文部分内容阅读
建构主义学习观的一个基本观点是,学习是积累性的,也就是说,一切新的学习都是在已有知识经验的基础上,通过意义建构的方式获得的,那么高中数学学习已有经验应包括褪初中的数学知识,和已形成的思维方式。现实的情况又是怎样的呢?
进入高中新生基础知识遗忘较多;对数学思想的理解基本停留在初中水平,把数学学习等同于解题,但解题方法和技巧的学习也只停留于模仿、记忆、定式,没有真正理解知识,也没有进行数学思考的意识和掌握数学思考的方法,在记忆模仿型、思维定式型、探究理解型三个认识水平中,多属于前两类,以思维定式型居多,这种局面很不利于高中数学教与学。
学习方法上基本是上课听,下课做,不会自主学习,学习上基本是被动的,尚未养成良好的学习习惯,加上高,初中数学知识密度的不同,初中数学知识点较少,高中课堂容量大,高初中对学生思维能力要求上的变化,使相当一部分学生产生对教学内容和方法上的不适应,认为高中数学比初中数学上得快,高中学习数学困难或时间不够。一学期结束开始出现滑坡,产生了两极分化,对高中数学失去学习兴趣。
解题习惯方面,受初中定式影响,对有固定操作程序的题目觉得比较轻松。如:三角变换、等差数列与等比数列的计算等。而没有固定解题套路、需要发散性思维的问题十分困难,如证明题,尤其是代数证明题,鉴于上面的学习状况,我们应如何整合初高中的数学教学呢?
一、教学内容及教材编排的整体性
新课程标准中初中内容倾向于基础性和普及性,主要是让全体学生学习人人都需要的数学知识,而高中内容则注重发展性及研究性,以提高学生的实践与创新能力,但数学知识本身的内在联系决定了教材内容的选定与编排要相互衔接,螺旋式上升,知识中间缺少某一环对后面的学习都有很大影响。所以初高教学内容我认为应该:
1.适度提高初中后期内容的理论性。初中教材叙述方法比较简单,语言通俗易懂,直观性、趣味性强,结论容易记忆,学生掌握得也比较好。但在初三阶段增强教材内容叙述的严谨性、规范性,适度体现数学知识的抽象思维和空间想象特点。
使学生上高中前提前适应数学知识的抽象表述方法,不至于“措手不及”。而高中教材则应初中化使用。比如:多举实例,增强教材趣味性、直观性;多用教具演示,借助多媒体辅助教学,帮助学生逐步增强空间想象能力;加强定义、概念之间的类比,逐步提高学生对教材理解的深刻性。
2.增加过渡性教材教学,使初高中知识系列化、系统化。如二次函数是高初中数学的一个重要内容,仅凭初中的教学要求在高中显然是不够的,建议高一“一元二次不等式的解法”之后,增加“四个二次之间的关系”一节,以系统阐述一元二次方程、二次三项式、二次函数、一元二次不等式的内在联系,以及这种联系的运用。
在函数的单调性之后,增加“部分抛物线的问题”一节,把函数概念从初中到高中螺旋上升落到实处。再如教学三角函数时,“余弦定理”、“正弦定理”应单独先成节,作为初、高中数学的衔接内容先进行教学,
二、数学思维方法教学的整体性
新课程标准中把数学思想方法提到一个很高的地位,现实中随着计算机的广泛使用,数学思想方法在各个领域的用处日益突出。所以不论初中、高中同步强调数学思想方法教学是必要的:
1.由于初中学生思维偏向于形象思维和机械记忆。因此要注意提高学生的意义识记能力,帮助学生掌握意义识记的方法,教师应在平时结合分类讨论思想、函数对应思想的训练题,加强对学生思维的灵活性,提高有意义记忆和数学思维意识与能力的培养。而高一教学可通过设计出一些起点低、坡度小、密度强的课堂结构,有意识地分散难点;向抽象思维、逻辑思维、立体思维衔接,使他们注意特殊和一般、归纳和演绎、理论和实践的关系。
2.突出数形结合。由于初高中数学首先由函数相接,而函数教学中图象占有相当大的比重,函数图象对于研究函数的性质起到很重要的作用。通过观察函数图象的变化趋势,可以总结出函数的性质。函数与反函数的函数图象的关系也是通过图象变化特点来归纳的性质,指数函数的性质、对数函数的性质本身就是由函数图象给出的。
所以不论初高中,注意图象教学,使学生不仅能从图象观察得到相应的性质,同时在研究性质时也要有函数图象来印证的思维方式。在教学过程中要注意培养学生绘制某些简单函数图象的技能,记住某些常见的函数图象的草图,养成利用函数图象来说明函数的性质和分析问题的习惯。
三、教学方法的整体性
新课程标准强调培养学生的创新能力和实践能力,教学方法推行探究性和研究性学习,教学中要逐步渗透这种教学思想。
1.高中与初中的教学方法有相同之处,均以讲解法为主。但初中教学要尽力克服保姆式的教学,改变事无巨细地讲解知识,总结题型,归纳方法方式,提高教学知识的系统性与网络化。高一应承接初中教学对解题方法虽有总结归纳,增加练习课次数和题量训练量,先让学生掌握通性通法,使刚入学的学生度过适应期。
2.不论初高中,教师应有意识地从讲述法向其他教学法(探究式和研究性教法)衔接,如引导学生怎样学好数学语言、阅读数学课本,如何掌握数学概念、用活数学公式、以及怎样掌握数学解题基本技巧等,都需要教师在学法指导的过程中不断渗透给学生。
总之,初高中数学教学的整体性是一个系统工程,各阶段教学对于提高学生十二年学习效果都是至关重要的,我们只有从各个方面研究,促使两个阶段教学的一体化,才会感觉数学越教越有滋味,否则只能让多数学生远离数学。
(河北省邯郸市第四中学)
进入高中新生基础知识遗忘较多;对数学思想的理解基本停留在初中水平,把数学学习等同于解题,但解题方法和技巧的学习也只停留于模仿、记忆、定式,没有真正理解知识,也没有进行数学思考的意识和掌握数学思考的方法,在记忆模仿型、思维定式型、探究理解型三个认识水平中,多属于前两类,以思维定式型居多,这种局面很不利于高中数学教与学。
学习方法上基本是上课听,下课做,不会自主学习,学习上基本是被动的,尚未养成良好的学习习惯,加上高,初中数学知识密度的不同,初中数学知识点较少,高中课堂容量大,高初中对学生思维能力要求上的变化,使相当一部分学生产生对教学内容和方法上的不适应,认为高中数学比初中数学上得快,高中学习数学困难或时间不够。一学期结束开始出现滑坡,产生了两极分化,对高中数学失去学习兴趣。
解题习惯方面,受初中定式影响,对有固定操作程序的题目觉得比较轻松。如:三角变换、等差数列与等比数列的计算等。而没有固定解题套路、需要发散性思维的问题十分困难,如证明题,尤其是代数证明题,鉴于上面的学习状况,我们应如何整合初高中的数学教学呢?
一、教学内容及教材编排的整体性
新课程标准中初中内容倾向于基础性和普及性,主要是让全体学生学习人人都需要的数学知识,而高中内容则注重发展性及研究性,以提高学生的实践与创新能力,但数学知识本身的内在联系决定了教材内容的选定与编排要相互衔接,螺旋式上升,知识中间缺少某一环对后面的学习都有很大影响。所以初高教学内容我认为应该:
1.适度提高初中后期内容的理论性。初中教材叙述方法比较简单,语言通俗易懂,直观性、趣味性强,结论容易记忆,学生掌握得也比较好。但在初三阶段增强教材内容叙述的严谨性、规范性,适度体现数学知识的抽象思维和空间想象特点。
使学生上高中前提前适应数学知识的抽象表述方法,不至于“措手不及”。而高中教材则应初中化使用。比如:多举实例,增强教材趣味性、直观性;多用教具演示,借助多媒体辅助教学,帮助学生逐步增强空间想象能力;加强定义、概念之间的类比,逐步提高学生对教材理解的深刻性。
2.增加过渡性教材教学,使初高中知识系列化、系统化。如二次函数是高初中数学的一个重要内容,仅凭初中的教学要求在高中显然是不够的,建议高一“一元二次不等式的解法”之后,增加“四个二次之间的关系”一节,以系统阐述一元二次方程、二次三项式、二次函数、一元二次不等式的内在联系,以及这种联系的运用。
在函数的单调性之后,增加“部分抛物线的问题”一节,把函数概念从初中到高中螺旋上升落到实处。再如教学三角函数时,“余弦定理”、“正弦定理”应单独先成节,作为初、高中数学的衔接内容先进行教学,
二、数学思维方法教学的整体性
新课程标准中把数学思想方法提到一个很高的地位,现实中随着计算机的广泛使用,数学思想方法在各个领域的用处日益突出。所以不论初中、高中同步强调数学思想方法教学是必要的:
1.由于初中学生思维偏向于形象思维和机械记忆。因此要注意提高学生的意义识记能力,帮助学生掌握意义识记的方法,教师应在平时结合分类讨论思想、函数对应思想的训练题,加强对学生思维的灵活性,提高有意义记忆和数学思维意识与能力的培养。而高一教学可通过设计出一些起点低、坡度小、密度强的课堂结构,有意识地分散难点;向抽象思维、逻辑思维、立体思维衔接,使他们注意特殊和一般、归纳和演绎、理论和实践的关系。
2.突出数形结合。由于初高中数学首先由函数相接,而函数教学中图象占有相当大的比重,函数图象对于研究函数的性质起到很重要的作用。通过观察函数图象的变化趋势,可以总结出函数的性质。函数与反函数的函数图象的关系也是通过图象变化特点来归纳的性质,指数函数的性质、对数函数的性质本身就是由函数图象给出的。
所以不论初高中,注意图象教学,使学生不仅能从图象观察得到相应的性质,同时在研究性质时也要有函数图象来印证的思维方式。在教学过程中要注意培养学生绘制某些简单函数图象的技能,记住某些常见的函数图象的草图,养成利用函数图象来说明函数的性质和分析问题的习惯。
三、教学方法的整体性
新课程标准强调培养学生的创新能力和实践能力,教学方法推行探究性和研究性学习,教学中要逐步渗透这种教学思想。
1.高中与初中的教学方法有相同之处,均以讲解法为主。但初中教学要尽力克服保姆式的教学,改变事无巨细地讲解知识,总结题型,归纳方法方式,提高教学知识的系统性与网络化。高一应承接初中教学对解题方法虽有总结归纳,增加练习课次数和题量训练量,先让学生掌握通性通法,使刚入学的学生度过适应期。
2.不论初高中,教师应有意识地从讲述法向其他教学法(探究式和研究性教法)衔接,如引导学生怎样学好数学语言、阅读数学课本,如何掌握数学概念、用活数学公式、以及怎样掌握数学解题基本技巧等,都需要教师在学法指导的过程中不断渗透给学生。
总之,初高中数学教学的整体性是一个系统工程,各阶段教学对于提高学生十二年学习效果都是至关重要的,我们只有从各个方面研究,促使两个阶段教学的一体化,才会感觉数学越教越有滋味,否则只能让多数学生远离数学。
(河北省邯郸市第四中学)