论文部分内容阅读
掌纹识别是生物特征识别中的一种,由于其分辨率要求低、设备成本低、用户易接受等优点受到众多研究者的关注。同其他生物特征识别一样也包括几何特征和数学特征识别两类方法,在数学特征中PCA、ICA、FLD等特征都可以用于掌纹识别。PCA是一种基于二阶统计的最小均方误差意义上的最优维数据压缩技术,FLD是一种较为普遍的用于特征提取的线性分类方法。将PCA和FLD结合起来进行掌纹识别,在识别阶段进一步利用了以前仅用于降维的PCA特征和FLD特征相融合进行识别。实验结果证明该方法比未改进的FLD方法在识别率上得到