论文部分内容阅读
实际生产过程呈现多模态,通过聚类分析可以了解生产状态,进行生产故障诊断或有针对性的质量检测,传统的线性分析方法难以有效提取非线性特性。谱聚类是较为先进的聚类方法,但常规的谱聚类分析是按照特征值的大小来进行特征选择的,而特征值的大小表示数据在特征向量上的方差信息;实际生产过程数据分布复杂,将熵值估计引入谱聚类特征选择中,并应用于生产过程状态的聚类分析中,分别利用标准数据、TE生产过程数据对方法的有效性进行验证。验证结果表明熵值评估谱聚类方法取得了更优的聚类结果,可以更加有效了解生产过程状态。