论文部分内容阅读
非负矩阵分解(NMF)作为一种盲源分离的方法,在高光谱图像解混方面已得到广泛应用。然而由于NMF的目标函数具有非凸性,使得其极易陷入局部最小值,为了提高解混精度,通常会根据具体的问题加入一定的约束条件。受丰度矩阵体现出的稀疏性启发,基于稀疏约束的非负矩阵分解高光谱解混算法得到迅猛发展。然而目前该类方法存在对丰度系数稀疏性先验表征不充分导致算法稳定性差的问题。针对该问题,提出了一种基于光谱加权稀疏非负矩阵分解高光谱解混方法,该方法在非负矩阵分解解混模型中引入光谱加权因子刻画丰度系数的稀疏性,以促进所有