论文部分内容阅读
支持向量机(support vector machine, SVM)是一种广泛应用于统计分类以及回归分析的监督学习方法.基于内点法(interior point method, IPM)的SVM训练具有空间占用小、迭代趋近快等优点,但随着训练数据集规模的增大,仍面临处理速度与存储空间所带来的双重挑战.针对此问题,提出利用CPU-GPU异构系统进行大规模SVM训练的混合并行机制.首先利用计算统一设备架构(compute unified device architecture, CUDA)对基于内点法的SVM