爱因斯坦场方程研究

来源 :哈尔滨理工大学学报 | 被引量 : 0次 | 上传用户:ah12345679
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  摘要:我们将介绍我们的工作:①把9个关联系数分成两组:涉及 (线加速度)的A组包括Γ 0 01 ,Γ 1 00 , Γ 1 11 , Γ 1 22 , 和 Γ 1 33 ;不涉及的B组包括Γ 2 12 , Γ 2 33 , Γ 3 13 , 和 Γ 3 23 。②回顧关系式() r=() Nγ 3,这里() r是相对论力学中的线加速度,() N是牛顿力学中的线加速度,γ是洛伦兹因数。③我们已经确定(Γ 0 01 ) N=-b ′b -1 ,(Γ 1 00 ) N=-c 2b ′b -5 ,(Γ 1 11 ) N=b ′b -1 ,(Γ 1 22 ) N=-rb -2 ,(Γ 1 33 ) N=-rb -2 sin 2θ。④我们已经确定(Γ 0 01 ) r=(-b ′b -1 )γ 3, (Γ 1 00 ) r=(-c 2b ′b -5 )γ 3,(Γ 1 11 ) r=(b ′b -1 )γ 3,(Γ 1 22 ) r=(-rb -2 )γ 3,(Γ 1 33 ) r=(-rb -2 sin 2θ)γ 3。⑤我们已经证明Γ 0 01 =A ′/(2A)= -b ′b -1 , Γ 1 00 =A ′/(2B)=-c 2b ′b -5 ,Γ 1 11 =b ′/(2B)=b ′b -1 ,Γ 1 22 =-rb -1 =-rb -2 ,Γ 1 33 =-rb -1 sin 2θ=-rb -2 sin 2θ。(6)我们已经确定(Γ 1 12 ) N r=r -1 ,(Γ 2 33 ) N r= sin θ cos θ,(Γ 3 13 ) N r=r -1 ,(Γ 3 23 ) N r= cot θ。⑥我们分析了 Schwarzschild 解并得出两个结论:( a )B =(1-2GM/(c 2r)) -1 =(1- r· 2/c 2) -1 =γ 2,这表明它和牛顿守恒定律有关。( b )对于弱引力场GM/(c 2r)1, B=(1-2GM/(c 2r)) -1 ≈ 1+ 2GM/(c 2r)≈1+2GM/(c 2r)+(GM/(c 2r)) 2=(1+GM/(c 2r)) 2=γ 2,因此,γ=1+GM/(c 2r)=b,这个关系式对强引力场也适用。把这些需要的表达方式带入方程式,并应用关系式,我们能简化方程式。我们已经得到了相对论解:-c 2 d τ 2=c 2(1+GM/(c 2r)) -2 d t 2-(1+GM/(c 2r)) 2 d r 2-r 2 d θ 2-r 2 sin 2θ d φ 2 .
  关键词:广义相对论;场方程;引力理论
  DOI:10.15938/j.jhust.2019.01.024
  中图分类号: O412.1
  文献标志码: A
  文章编号: 1007-2683(2019)01-0145-04
  A Study of Einstein Field Equation
  WANG Xue ren
  (School of Applied Science, Harbin University of Science and Technology, Harbin 150080, China)   Abstract:
  In this paper we present our research work: ①We divide 9 connection coefficients into two groups: Group A involving  (the linear acceleration) includes Γ 0 01 ,Γ 1 00 , Γ 1 11 , Γ 1 22 , and Γ 1 33 ; Group B not involving  includes Γ 2 12 , Γ 2 33 , Γ 3 13 , and Γ 3 23 . ②Recalling the relation formula: () R=() Nγ 3 , where () R is the linear acceleration in relativistic mechanics, () N the linear acceleration in Newtoneon mechanics, and γ Lorrentz factor. ③We have determined that (Γ 0 01 ) N= -b ′b -1 , (Γ 1 00 ) N= -c 2b ′b -5 , (Γ 1 11 ) N= b ′b -1 , (Γ 1 22 ) N= -rb -2 , (Γ 1 33 ) N= -rb -2 sin 2θ . ④We have determined that (Γ 0 01 ) R = (-b ′b -1 )γ 3, (Γ 1 00 ) R = (-c 2b ′b -5 )γ 3, (Γ 1 11 ) R = (b ′b -1 )γ 3, (Γ 1 22 ) R = (-rb -2 )γ 3, (Γ 1 33 ) R = (-rb -2 sin 2θ)γ 3 . ⑤We have proved that Γ 0 01 =A ′/(2A)=-b ′b -1 , Γ 1 00 = A ′/(2B) = -c 2b ′b -5 , Γ 1 11 = B ′/(2B) = b ′b -1 , Γ 1 22 = -rB -1 = -rb -2 ,Γ 1 33 = -rB -1 sin 2θ= -rb -2 sin 2θ . (6)We have determined that (Γ 1 12 ) N R = r -1 , (Γ 2 33 ) N R = sin θ cos θ, (Γ 3 13 ) N R= r -1 , (Γ 3 23 ) N R = cot θ . ⑥We have analyzed Schwarzschild solution, and drawn two conclusions: (a) B=(1-2GM/(c 2r)) -1 = (1- r· 2/c 2) -1 = γ 2 , indicating that it involves Newtoneon formula of energy conservation. (b)In the case of the weak gravitational field, GM/(c 2r)1, B = (1-2GM/(c 2r))  -1 ≈ 1 + 2GM/(c 2r) ≈ 1 + 2GM/(c 2r) + (GM/(c 2r)) 2 = (1+GM/(c 2r)) 2 = γ 2 , therefore, γ= 1 + GM/(c 2r) = b , it holds too, in the case of the strong gravitational field. (8)Substituting the needed expressions into equations, and applying the relation formulas, we can simplify the equations, Obtaining the relativistic solution:   -c 2 d τ 2 = c 2(1+GM/(c 2r)) -2 d t 2 - (1+GM/(c 2r)) 2 d r 2-r 2 d θ 2-r 2 sin 2θ d φ 2
  Keywords:general relativity; field equation; gravitational theory
  0Introduction
  Schwarzschild solution for Einstein field equation has made an important contribution to development of general relativity, but we should point out Schwarzschild solution belongs to Newtonian mechanics, and it is suitable only to the weak gravitational field, but not suitable to the strong gravitational field. In this paper we will give sufficient basis for this conclusion.
  1Classification of connection coefficients
  We divide 9 connection coefficients into two groups: group A involving  (the linear acceleration), see Table1; group B not involving  , see Table 1 and 2.
  Table1. Group A involving
  Γ 0 01 (=A ′/(2A)=-B ′/(2B)) = -Γ 1 11 = /(r·r·), Γ 1 00 = -/( t ·t·), Γ 1 11 =-/(r·r·), Γ 1 22 =-/(θ ·θ ·),Γ 1 33 =-/(φ·φ·)
  Table2. Group B not involving
  Γ 2 12 =-θ ¨/(r·θ ·), Γ 2 33 =-θ ¨/(φ·φ·), Γ 3 13 =-/(r·φ·), Γ 3 23 =-/(θ ·φ·)
  2 R= Nγ 3
  R is linear acceleration in relativistic mechanics, N is linear acceleration in Newtoneon mechanics, the relation formula between  R and  N is as below (references[2], P38)
  R= Nγ 3 (1)
  where γ is Lorentz factor. So that the expressions of group A in two kinds of mechanics are different.
  3The expressions of group A in Newtonian mechanics
  Example 1: Determine the expression of (Γ 1 11 ) N .
  Solution: From -c 2 d τ 2 = -b 2 d r 2 (see line element Exp. (4))
  r·=cb -1 . From  N+ (Γ 1 11 ) N(r·r·)=0 ,we can get
  (Γ 1 11 ) N = - d r d τ d r· d r/(r·(cb -1 ))=-(r·(-cb -2 b ′)/(r·(cb -1 ))=b ′b -1 .
  Following Example 1, we can obtain Table 3.   Table 3. The expressions of Group A in Newtonian mechanics
  (Γ 0 01 ) N=-b ′b -1 , (Γ 1 00 ) N=-c 2b ′b -5 , (Γ 1 11 ) N=b ′b -1 , (Γ 1 22 ) N=-rb -2 , (Γ 1 33 ) N=-rb -2  sin  2θ.
  4The expressions of group A in relativistic mechanics
  Example 2: Determine the expression of  (Γ 1 11 ) R .
  Solution: From  () R+ (Γ 1 11 ) R(r·r·)=0 we can get  (Γ 1 11 ) R=- () R/(r·r·)=γ 3(- N/(r·r·)= (Γ 1 11 ) Nγ 3 .
  Following Example 2 we can obtain Table 4.
  Table4. The expressions of group A in relativistic mechanics
  (Γ 0 01 ) R=(-b ′b -1 )γ 3, (Γ 1 00 ) R=(-c 2b ′b -5 )γ 3, (Γ 1 11 ) R=(b ′b -1 )γ 3,
  (Γ 1 22 ) R=(-rb -2 )γ 3, (Γ 1 33 ) R=(-rb -2  sin  2θ)γ 3
  5Group A used in Schwarzschild solution
  Example 3. Prove Γ 1 00 =A ′/(2B)= -c 2b ′b -5
  Proof.
  Γ 1 00 = A ′/(2B)= (c 2B -1 ) ′/(2B)= (c 2b -2 ) ′/(2b 2)=-2c 2b -3 b ′/(2b 2)=-c 2b ′b -5
  Following Example 3 we can obtain Table 5.
  Table 5. Equivalence
  Γ 0 01 =A ′/(2A)=-b ′b -1 , Γ 1 00 =A ′/(2B)= -c 2b ′b -5 ,
  Γ 1 11 =B ′/(2B)=b ′b -1 , Γ 1 22 =-rB -1 =-rb -2 ,
  Γ 1 33 =-rB -1  sin  2θ=-rb -2  sin  2θ
  6The expression of Group B
  The expressions of group B in two kinds of mechanics have no difference. See Table 6.
  Table 6. The expression of group B
  (Γ 2 12 ) N R=r -1 , (Γ 2 33 ) N R= sin θ cos θ, (Γ 3 13 ) N R=r -1 , (Γ 3 23 ) N R= cot θ   7Analyzing Schwarzschild Solution
  Schwarzschild solution is a very important result in general relativity, practice has proved that it is suitable for the weak gravitational field very well.
  As a part of Schwarzschild solution B = (1-2GM/(c 2r))  -1  is related closely with Lorentz factor,
  γ 2= (1- r· 2/c 2)  -1 = (1-2GM/(c 2r))  -1 =B=b 2
  It is very clear that Schwarz Schild solution involves a Newtoneon formula of energy conservation.
  r· 2/2=GM/r (2)
  In the case of the weak gravitational field, GM/(c 2r)<<1,
  b 2=B= (1-2GM/(c 2r))  -1 ≈1+2GM/(c 2r)≈
  1+2GM/(c 2r))+ (GM/(c 2r)) 2= (1+GM/(c 2r)) 2=γ 2
  That is
  γ=1+GM/(c 2r)=b (3)
  Form. (3) holds still in the case of the strong gravitational field.
  8Solving Einstein field equation
  Line element is expressed as below:
  -c 2 d τ 2=a 2(r) d t 2-b 2(r) d r 2-r 2 d θ 2-r 2 sin  2θ d φ 2 (4)
  In the following we will write a(r) and b(r) as a and b. The relation formulas between a and b are as following:
  ab=c
  a ′b+ab ′=0 (5)
  Einstein field equation can be written as below:
  R μν = νΓ σ μσ - σ Γ σ μν +Γ ρ μσ Γ σ ρν -Γ ρ μν Γ σ ρσ =0 (6)
  Eq. (6) can be rewritten as following:
  R 00 =- rΓ 1 00 +Γ 1 00 (Γ 0 01 -Γ 1 11 )-Γ 1 00 (Γ 2 12 +Γ 3 13 )=0
  R 11 = rΓ 0 01 +Γ 0 01 (Γ 0 01 -Γ 1 11 )-Γ 1 11 (Γ 2 12 +Γ 3 13 )=0
  R 22 =- rΓ 1 22 + θ Γ 3 23 +Γ 3 23 Γ 3 23 =0 (7)
  Substituting the needed expressions of Tables 4 and 6 into Eq. (7), we obtain:
  R 00 =c 2b ″b -5 γ 3-c 2b ′b -5 γ 5 (5b ′b -1 γ-3γ ′-2b ′b -1 γ)+2c 2b ′b -5 γ 3r -1 =0   R 11 =-b ″b -1 γ 3+b ′b -1 γ 4 (b ′b -1 γ 2-3γ ′γ+2b ′b -1 γ 2)-2b ′b -1 γ 3r -1 =0
  R 22 = (rb -2 γ 3) ′-1=0 (8)
  Applying γ= b (Form. 3), Eqs. (8) can be simplified as:
  b ″+2b ′r -1 =0
  b ″+2b ′r -1 =0
  (rb) ′-1=0. (9)
  From Eq.(9) we can get
  b=1+C/r (10)
  Comparing Exp.(10) with Form. (3) we can determine:
  C=GM/c 2 ,
  so that
  b(r)=1+GM/(c 2r) (11)
  using relation Form (5a) we can get
  a(r)=c (1+GM/((c 2r))  -1 (12)
  The relativistic solution can be expressed as
  -c 2 d τ 2=c 2 (1+GM/(c 2r))  -2 d t 2- (1+GM/(c 2r)) 2 d r 2-r 2 d θ 2-r 2 sin  2θ d φ 2. (13)
  Appendix A.Schwarzschild Solution
  Line element can be written as below:
  -c 2 d τ 2=A(r) d t 2-B(r) d r 2-r 2 d θ 2-r 2 sin  2θ d φ 2 (A1)
  In the following we will write A(r) and B(r) as A and B . Therelation formulas between A and B as following:
  AB=c 2 (A2a)
  A ′B+Ab ′=0 (A2b)
  The expressions of connection coefficients are as below:
  Γ 0 01 =A ′/(2A)=12A ′A -1 , Γ 1 00 =A ′/(2B)=12c 2A ′A,
  Γ 1 11 =B ′/(2B)=-12A ′A -1 , Γ 1 22 =-rB -1 =-c -2 rA,
  Γ 1 33 =-rB -1  sin  2θ=-c 2rA sin  2θ (A3a)
  Γ 2 12 =r -1 , Γ 1 33 = sin θ cos θ, Γ 3 13 =r -1 , Γ 3 23 = cot θ (A3b)
  Substituting the needed expressions in (A3a) and (A3b) into Eqs. (7), ones can obtain:
  R 00 =- r(12c -2 A ′A)+(12c -2 A ′A)(12A ′A -1 -(-12A ′A -1 ))-(12c -2 A ′A)(r -1 +r  -1 )=0 (A4a)   R 11 = r(12A ′A -1 )+(12A ′A -1 )(12A ′A -1 -(-12A ′A -1 ))-(-12A ′A -1 )(r -1 +r  -1 )=0 (A4b)
  R 22 =- r(-rA/c 2)+ θ cot θ+ cot θ cot θ=0 (A4c)
  Eqs.(A4a)~(A4c)can be simplified as
  A ″+2A ′r -1 =0 (A5a)
  A ″+2A ′r -1 =0 (A5b)
  (rA) ′/c 2-1=0 (A5c)
  From Eq. (A5c) ones can get
  A=c 2(1+C/r).
  Analyzing the gravitational field, a conclusion is given ([1], p.121)
  h 00 =-2GM/(c 2r)=C/r,
  So that
  C =-2GM/c 2,
  A(r)=c 2(1-2GM/(c 2r)) (A6a)
  Applying relation Form. (A2a), ones can get
  B(r)= (1-2GM/(c 2r))  -1 (A6b)
  Therefore Schwarzschild solution can be written as
  -c 2 d τ 2=c 2(1-2GM/(c 2r)) d t 2- (1-2GM/(c 2r))  -1 d r 2-r 2 d θ 2-r 2 sin  2θ d φ 2 (A7)
  References:
  [1]FOSTER J., Nightingale J.D.A short Course in General Relativity[M]. SecondEdition. 1995. New York: Springer Verlag, Chaps 2, 3.
  [2]RINDLER W. Introduction to Special Relativity[M]. Oxford: Clarendon press,1982.
其他文献
“BOP (基于过程)实践教学”既是培养学生分析问题、解决问题能力的重要手段,也是提高学生综合素养的有效途径。 BOP模式关键之处在于以“过程教育”为中心,将单一教学提升为对学
针对启航后锚机液压系统意外故障的问题,轮机员应如何进行应急处理,船舶如何维持正常的营运业务使公司的损失降至最低及事后分析和避免事故重演等问题进行分析,并提出相应建
回 回 产卜爹仇贱回——回 日E回。”。回祖 一回“。回干 肉果幻中 N_。NH lP7-ewwe--一”$ MN。W;- __._——————》 砧叫]们羽 制作:陈恬’#陈川个美食 Back to yield
欣闻母校即将百年校庆,作为海大毕业的学子,甚为母校百年华诞感到高兴和自豪。
多民族是我国基本国情,利用信息技术发展民族教育是实现教育公平的重要措施,更是国家教育信息化战略的重要部署。民族教育现代化的发展关键在于提升少数民族教师队伍,特别是
回 回 产卜爹仇贱回——回 日E回。”。回祖 一回“。回干 肉果幻中 N_。NH lP7-ewwe--一”$ MN。W;- __._——————》 砧叫]们羽 制作:陈恬’#陈川个美食 Back to yield
报纸
在儿科临床护理工作中,口服给药是疾病治疗中的一项重要措施之一。患儿年龄小,需用药物剂量小,加上患儿不配合,喂药较为困难。近年来,我科采用布洛芬混悬滴剂(商品名:美林,强生公司生
针对HSV空间上的数字图像,构建了一种基于Feng三维混沌映射的图像加密方法.如果原始图像是RGB格式的,可以先将其转变到HSV空间下.进而,通过Feng映射构建x、y、z三个方向上的
巴里坤县气候寒冷,适宜种植的经济林木品种单一,林业经济效益低下。近几年我县引种了李树进行试种,从试种情况看比较适应巴里坤县的气候特点,目前部分已开始挂果。
概周期型函数的研究受到了国内外越来越多数学工作者的关注,特别是将其应用到微分方程中.利用不动点定理,结合算子半群有关理论,讨论了一类中立型微分方程的渐近概周期温和解