论文部分内容阅读
目前多数跟踪算法采用尺度遍历穷搜索策略应对目标的尺度变化,其跟踪性能和效率不佳。针对此问题,基于特定目标提议框提出一种自适应跟踪算法。对目标提议框生成算法进行改进,融入跟踪目标的尺度和位置信息,得到特定目标提议框并获取其特征。为确保跟踪的连续性,将自适应支持向量机作为跟踪模型,对特定目标提议框进行评分,得到目标位置。对均匀采样样本和特定目标提议框正负样本分类,进行模型更新。在OTB100数据库上进行对比实验,结果表明,与CNN-SVM、DeepSRDCF等算法相比,该算法能较好地适应目标的尺度变化和